STM32串口DMA环形缓冲收发详解

基于HAL库的STM32串口DMA环形缓冲收发实例

首先在此感谢开源项目,以及大佬们的无私奉献,让每一个逐梦人能够免费学习,再次感谢!
发布只为记录,记性不够,笔记来凑。记得点赞哦
具体实现原理讲起来确实挺复杂,不过用起来还是很NICE的!可以直接移植!

1、STM32CubeMax配置

1.1、选择单片机型号

2、配置时钟和串口


或者直接在HCLK位置输入72,点击OK自动配置


这个地方第四步,模式选择MODE。发送选择正常NOMAL.接收RX选择循环模式,第五步,外设地址不自增,存储器地址自增勾选

数字长度选择字节模式byte


此处必须使能UART,原因后面会提到

然后点击生成文件就行。如果用的keil,则直接点击Open Project,如果用的VSCODE,选择打开文件夹Open folder

到这个页面后点击MDK_ARM,就是生成的文件

然后返回上一层,右击,选择打开方式,为通过code打开,





右击,选择新建文件夹

新建文件夹BSP 和bsp_usart.h和bsp_usart.c

将文件夹拖到目录栏

将刚才的两个文件夹路径放进来

至此,所有的构建操作已经全部完成,剩下的就是程序编辑

为了方便打印调试,引用printf打印输出,引入fputc,添加头文件#include “stdio.h”

#include "stdio.h"
int fputc(int ch, FILE *f)
{
    // while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
    // USART1->DR = (unsigned char) ch;
    HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 100);
    return ch;
}

huart1结构体句柄由系统自动生成


保姆级的提示到这一步结束,要是不会用就直接调用吧,下来可能就是关键步骤,不会这么详细的讲,至于如何使用这些引入的函数,点击这个链接

定义数组,用来存放发送的数据

#define UART1_RX_RB_LEN (128u)

uint8_t usart1_tx_rb_data[128];
uint8_t usart1_rx_rb_data[UART1_RX_RB_LEN];

绑定结构体指针BUFF和定义的实体数组

lwrb_init(&usart1_tx_rb, usart1_tx_rb_data, ARRAY_LEN(usart1_tx_rb_data));
lwrb_init(&usart1_rx_rb, usart1_rx_rb_data, ARRAY_LEN(usart1_rx_rb_data));

2、发送环节

​ 为了移植方便,使底层逻辑不暴露,引入发送函数,方便外部调用

void USART1_SendData(const uint8_t *p_data, uint16_t len)
{
    lwrb_write(&usart1_tx_rb, p_data, len); /* Write data to TX buffer for loopback */
    USART1_Start_DmaTx();
}

void USART1_Sendstring(const char *str)
{
    lwrb_write(&usart1_tx_rb, str, strlen(str)); /* Write data to TX buffer for loopback */
    USART1_Start_DmaTx();

}

真正的发送函数处理

uint8_t USART1_Start_DmaTx(void)
{
    uint32_t primask;
    uint8_t started = 0;

    primask = __get_PRIMASK();
    __disable_irq();
    if (usart1_tx_dma_current_len == 0
            && (usart1_tx_dma_current_len = lwrb_get_linear_block_read_length(&usart1_tx_rb)) > 0) 
    {
        __HAL_DMA_DISABLE(&hdma_usart1_tx);
         
        __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
            , __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_usart1_tx));
        __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
            , __HAL_DMA_GET_HT_FLAG_INDEX(&hdma_usart1_tx));
        __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
            , __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_usart1_tx));
        __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
            , __HAL_DMA_GET_GI_FLAG_INDEX(&hdma_usart1_tx));

        HAL_UART_Transmit_DMA(&huart1
            , (uint8_t*)lwrb_get_linear_block_read_address(&usart1_tx_rb)
            , (uint16_t)usart1_tx_dma_current_len);
        started = 1;
    }
    __set_PRIMASK(primask);
    
    return started;
}

发送完成后触发中断,跳过当前已经有的长度,然后再次进入发送状态,判断缓冲区中是否还存在数据,如果有进入IF语句,如果没有,返回started = 0;此时发送形成一个循环发送和检测

void USART1_TxTcCb(UART_HandleTypeDef *huart)
{
        lwrb_skip(&usart1_tx_rb, usart1_tx_dma_current_len);/* Skip sent data, mark as read */
        usart1_tx_dma_current_len = 0;           /* Clear length variable */
        USART1_Start_DmaTx();          /* Start sending more data */
}

3、接收环节

HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usart1_rx_dma_buffer, ARRAY_LEN(usart1_rx_dma_buffer));

利用此函数可以接受数据,直至触发IDLE空闲中断,具体细节点击函数查看,不在此赘述

此时会产生三种情况,接受一半中断。接受溢出中断和接收完成后空闲中断

如果自己注册回调函数则,会调用自己的回调函数,不然则为系统默认回调函数

不会的可以参考此篇注册串口回调函数

//注册回调事件
HAL_UART_RegisterRxEventCallback(&huart1, USART1_RxEventCb);

HAL_UART_RegisterCallback(&huart1, HAL_UART_TX_COMPLETE_CB_ID, USART1_TxTcCb);

产生回调后,进入回调函数,可以自定义一些回调处理和动作

//接受半个缓冲区完成回调函数
void USART1_DMA_RxHtCb( DMA_HandleTypeDef * p_hdma)
{
    UNUSED(p_hdma);

    USART1_RxEventCheck();
}

//接收完成回调函数
void USART1_DMA_RxTcCb( DMA_HandleTypeDef * p_hdma)
{
    UNUSED(p_hdma);
    
    USART1_RxEventCheck();
	usart1_rx_flag = 1;
}

/*!< UART Reception Event Callback     */
void USART1_RxEventCb(struct __UART_HandleTypeDef *huart, uint16_t pos)
{
    UNUSED(huart);
    UNUSED(pos);
    
    USART1_RxEventCheck();
}

对回调事件进行检查分析,看是那种情况,具体参考大佬文章

共有这么几种情况:

  • 情况A:缓冲区为空W == R = 0 == 0

  • 情况B:缓冲区将字节保存为W - R = 4 - 0 = 4``W > R

  • Case C : 缓冲区已满or orW == R - 1``7 == 0 - 1``7 = (0 - 1 + S) % S = (0 - 1 + 8) % 8 = (-1 + 8) % 8 = 7

  • R并且W可以保存S不同的值,从0到,即模数S - 1``S
  • 缓冲区将字节保存为W - R = 7 - 0 = 7``W > R
  • 情况D:缓冲区将字节保存为S - (R - W) = 8 - (5 - 3) = 6``R > W

  • 情况E:缓冲区已满为( ) 并保存字节W == R - 1``4 = 5 - 1``S - (R - W) = 8 - (5 - 4) ) = 7}

  • void USART1_RxEventCheck(void)
    {
        static uint16_t old_pos;
        uint16_t pos;
        
        /* Calculate current position in buffer and check for new data available */
        //检查缓冲区中已用长度
        pos = ARRAY_LEN(usart1_rx_dma_buffer) - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);
        if (pos != old_pos) 
        {    /* Check change in received data */
            if (pos > old_pos) 
            { /* Current position is over previous one */
                /*
                 * Processing is done in "linear" mode.
                 *
                 * Application processing is fast with single data block,
                 * length is simply calculated by subtracting pointers
                 *
                 * [   0   ]
                 * [   1   ] <- old_pos |------------------------------------|
                 * [   2   ]            |                                    |
                 * [   3   ]            | Single block (len = pos - old_pos) |
                 * [   4   ]            |                                    |
                 * [   5   ]            |------------------------------------|
                 * [   6   ] <- pos
                 * [   7   ]
                 * [ N - 1 ]
                 */
    
                lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[old_pos], pos - old_pos);
            } 
            else 
            {
                /*
                 * Processing is done in "overflow" mode..
                 *
                 * Application must process data twice,
                 * since there are 2 linear memory blocks to handle
                 *
                 * [   0   ]            |---------------------------------|
                 * [   1   ]            | Second block (len = pos)        |
                 * [   2   ]            |---------------------------------|
                 * [   3   ] <- pos
                 * [   4   ] <- old_pos |---------------------------------|
                 * [   5   ]            |                                 |
                 * [   6   ]            | First block (len = N - old_pos) |
                 * [   7   ]            |                                 |
                 * [ N - 1 ]            |---------------------------------|
                 */
                lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[old_pos], ARRAY_LEN(usart1_rx_dma_buffer) - old_pos);
                
                if (pos > 0) 
                {
                    lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[0], pos);
                }
            }
             old_pos = pos; /* Save current position as old for next transfers */
    		usart1_rx_flag = 1;
    
        }
    }
    
    

    当标志位置一后,对读取到的数据进行处理,此时传进来的数据需要我们自行进行拼接,比如上述情况E,发送的数据存到了两端,这样需要先将后面的读出来,再加上前面的

    void USART1_ProcessData(void)
    {
        uint8_t data[UART1_RX_RB_LEN];
        uint16_t len1 = lwrb_get_linear_block_read_length(&usart1_rx_rb);
        printf("len1 = %d\r\n", len1);
        if (len1 > 0) 
        {
            printf("lwrb_read(&usart1_tx_rb, data, len1) = %d\r\n"
                , lwrb_read(&usart1_rx_rb, data, len1));
            uint16_t len2 = lwrb_get_linear_block_read_length(&usart1_rx_rb);
            printf("len2 = %d\r\n", len2);
            if (len2 > 0)
            {
                printf("lwrb_read(&usart1_tx_rb, &data[len1], len2) = %d\r\n"
                    , lwrb_read(&usart1_rx_rb, &data[len1], len2));
            }
            // 进行data进行处理
    
            // 处理usart1_rx_rb的一些东西
            lwrb_write(&usart1_tx_rb
                , data
                , len1 + len2); /* Write data to TX buffer for loopback */  
    
            USART1_Start_DmaTx();
        }
    }
    

    再main函数中对标志位进行处理,

    int main(void)
    {
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_DMA_Init();
      MX_USART1_UART_Init();
      /* USER CODE BEGIN 2 */
      HAL_Delay(50);
      USART1_Init();
      printf("stm32f103rct6_uart_dma_loopback_test!\r\n");
      // uint8_t str[] = "USART1_Init\r\n";
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
        if (usart1_rx_flag == 1)
        {
          usart1_rx_flag = 0;
          // printf("usart1_rx_flag = 1\r\n");
          USART1_ProcessData();
        }
        HAL_Delay(1000);
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
      }
      /* USER CODE END 3 */
    }
    

    下面附上BSP_USART.c完整代码,

    
    #include "bsp_usart.h"
    #include "usart.h"
    #include "dma.h"
    
    #define UART1_RX_DMA_BUFFER_LEN (20u)
    #define UART1_RX_RB_LEN (128u)
    
    lwrb_t usart1_rx_rb;// Ring buffer instance for TX data
    lwrb_t usart1_tx_rb;// Ring buffer instance for TX data
    
    uint8_t usart1_rx_dma_buffer[UART1_RX_DMA_BUFFER_LEN];
    uint8_t usart1_rx_rb_data[UART1_RX_RB_LEN];// Ring buffer data array for RX DMA
    uint8_t usart1_tx_rb_data[128];// Ring buffer data array for TX DMA
    
    volatile size_t usart1_tx_dma_current_len;// Length of currently active TX DMA transfer
    volatile uint8_t usart1_rx_flag;
    
    int fputc(int ch, FILE *f)
    {
    
        HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 100);
    
        return ch;
    }
    
    uint8_t USART1_Start_DmaTx(void)
    {
        uint32_t primask;
        uint8_t started = 0;
        
        primask = __get_PRIMASK();
        __disable_irq();
    
        if (usart1_tx_dma_current_len == 0
                && (usart1_tx_dma_current_len = lwrb_get_linear_block_read_length(&usart1_tx_rb)) > 0) 
        {
            __HAL_DMA_DISABLE(&hdma_usart1_tx);
    
            __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
                , __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_usart1_tx));
            __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
                , __HAL_DMA_GET_HT_FLAG_INDEX(&hdma_usart1_tx));
            __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
                , __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_usart1_tx));
            __HAL_DMA_CLEAR_FLAG(&hdma_usart1_tx
                , __HAL_DMA_GET_GI_FLAG_INDEX(&hdma_usart1_tx));
    
            HAL_UART_Transmit_DMA(&huart1
                , (uint8_t*)lwrb_get_linear_block_read_address(&usart1_tx_rb)
                , (uint16_t)usart1_tx_dma_current_len);
    
            started = 1;
        }
        __set_PRIMASK(primask);
        
        return started;
    }
    
    void USART1_DMA_RxHtCb( DMA_HandleTypeDef * p_hdma)
    {
        UNUSED(p_hdma);
        
        USART1_RxEventCheck();
    }
    
    //接收完成回调函数
    void USART1_DMA_RxTcCb( DMA_HandleTypeDef * p_hdma)
    {
        UNUSED(p_hdma);
        
        USART1_RxEventCheck();
    	usart1_rx_flag = 1;
    }
    
    void USART1_RxEventCb(struct __UART_HandleTypeDef *huart, uint16_t pos)
    {
        UNUSED(huart);
        UNUSED(pos);
    
        USART1_RxEventCheck();
    }
    
    // 串口1发送完成回调
    void USART1_TxTcCb(UART_HandleTypeDef *huart)
    {
            lwrb_skip(&usart1_tx_rb, usart1_tx_dma_current_len);	/* Skip sent data, mark as read */
            usart1_tx_dma_current_len = 0;          			   /* Clear length variable */
            USART1_Start_DmaTx();         					       /* Start sending more data */
    }
    
    void USART1_Init(void)
    {
        lwrb_init(&usart1_tx_rb, usart1_tx_rb_data, ARRAY_LEN(usart1_tx_rb_data));
        lwrb_init(&usart1_rx_rb, usart1_rx_rb_data, ARRAY_LEN(usart1_rx_rb_data));
    
        HAL_UARTEx_ReceiveToIdle_DMA(&huart1, usart1_rx_dma_buffer, ARRAY_LEN(usart1_rx_dma_buffer));
        HAL_UART_RegisterRxEventCallback(&huart1, USART1_RxEventCb);
        HAL_UART_RegisterCallback(&huart1, HAL_UART_TX_COMPLETE_CB_ID, USART1_TxTcCb);
    }
    
    // void USART1_RxEventCheck(uint16_t pos)
    void USART1_RxEventCheck(void)
    {
        static uint16_t old_pos;
        uint16_t pos;
        
        /* Calculate current position in buffer and check for new data available */
        //检查缓冲区中已用长度
        pos = ARRAY_LEN(usart1_rx_dma_buffer) - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);
        // printf("old_pos = %d, pos = %d\r\n", old_pos, pos);
        if (pos != old_pos) 
        {    /* Check change in received data */
            if (pos > old_pos) 
            { /* Current position is over previous one */
                /*
                 * Processing is done in "linear" mode.
                 *
                 * Application processing is fast with single data block,
                 * length is simply calculated by subtracting pointers
                 *
                 * [   0   ]
                 * [   1   ] <- old_pos |------------------------------------|
                 * [   2   ]            |                                    |
                 * [   3   ]            | Single block (len = pos - old_pos) |
                 * [   4   ]            |                                    |
                 * [   5   ]            |------------------------------------|
                 * [   6   ] <- pos
                 * [   7   ]
                 * [ N - 1 ]
                 */
    
                lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[old_pos], pos - old_pos);
            } 
            else 
            {
                /*
                 * Processing is done in "overflow" mode..
                 *
                 * Application must process data twice,
                 * since there are 2 linear memory blocks to handle
                 *
                 * [   0   ]            |---------------------------------|
                 * [   1   ]            | Second block (len = pos)        |
                 * [   2   ]            |---------------------------------|
                 * [   3   ] <- pos
                 * [   4   ] <- old_pos |---------------------------------|
                 * [   5   ]            |                                 |
                 * [   6   ]            | First block (len = N - old_pos) |
                 * [   7   ]            |                                 |
                 * [ N - 1 ]            |---------------------------------|
                 */
    
                lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[old_pos], ARRAY_LEN(usart1_rx_dma_buffer) - old_pos);
                
                if (pos > 0) 
                {
                
                    lwrb_write(&usart1_rx_rb, &usart1_rx_dma_buffer[0], pos);
                }
            }
            old_pos = pos; /* Save current position as old for next transfers */
    	    usart1_rx_flag = 1;
        }
    }
    
    void USART1_ProcessData(void)
    {
        uint8_t data[UART1_RX_RB_LEN];
        uint16_t len1 = lwrb_get_linear_block_read_length(&usart1_rx_rb);
        printf("len1 = %d\r\n", len1);
        if (len1 > 0) 
        {
            printf("lwrb_read(&usart1_tx_rb, data, len1) = %d\r\n"
                , lwrb_read(&usart1_rx_rb, data, len1));
            uint16_t len2 = lwrb_get_linear_block_read_length(&usart1_rx_rb);
            printf("len2 = %d\r\n", len2);
            if (len2 > 0)
            {
                printf("lwrb_read(&usart1_tx_rb, &data[len1], len2) = %d\r\n"
                    , lwrb_read(&usart1_rx_rb, &data[len1], len2));
            }
            // 进行data进行处理
    
            // 处理usart1_rx_rb的一些东西
            lwrb_write(&usart1_tx_rb
                , data
                , len1 + len2); /* Write data to TX buffer for loopback */  
    
            USART1_Start_DmaTx();
        }
    }
    
    void USART1_SendData(const uint8_t *p_data, uint16_t len)
    {
        lwrb_write(&usart1_tx_rb, p_data, len); /* Write data to TX buffer for loopback */
        USART1_Start_DmaTx();
    }
    
    void USART1_Sendstring(const char *str)
    {
    
        lwrb_write(&usart1_tx_rb, str, strlen(str)); /* Write data to TX buffer for loopback */
        USART1_Start_DmaTx();
    
    }
    
    
    
    

    BSP_USART_H文件

    #ifndef __BSP_USART_H__
    #define __BSP_USART_H__
    
    #include "main.h"
    #include "stdio.h"
    #include "lwrb.h"
    
    #define ARRAY_LEN(x)            (sizeof(x) / sizeof((x)[0]))
    
    
    extern UART_HandleTypeDef huart1;
    extern DMA_HandleTypeDef hdma_usart1_rx;
    extern DMA_HandleTypeDef hdma_usart1_tx;
    extern volatile size_t usart1_tx_dma_current_len;
    extern volatile uint8_t usart1_rx_flag;
    
    void USART1_Init(void);
    void USART1_ProcessData(void);
    void USART1_SendData(const uint8_t *p_data, uint16_t len);
    void USART1_Sendstring(const char* str);
    
    
    
    
    
    
    
    
    
    
    #endif // ! __BSP_USART_H__
    
    

    lwrb文件链接

    #ifndef __BSP_USART_H__
    #define __BSP_USART_H__
    
    #include "main.h"
    #include "stdio.h"
    #include "lwrb.h"
    
    #define ARRAY_LEN(x)            (sizeof(x) / sizeof((x)[0]))
    
    
    extern UART_HandleTypeDef huart1;
    extern DMA_HandleTypeDef hdma_usart1_rx;
    extern DMA_HandleTypeDef hdma_usart1_tx;
    extern volatile size_t usart1_tx_dma_current_len;
    extern volatile uint8_t usart1_rx_flag;
    
    void USART1_Init(void);
    void USART1_ProcessData(void);
    void USART1_SendData(const uint8_t *p_data, uint16_t len);
    void USART1_Sendstring(const char* str);
    
    
    #endif // ! __BSP_USART_H__
    
    
    lwrb文件[链接](https://github.com/MaJerle/lwrb)
    
    git[下载链接](https://github.com/MaJerle/lwrb.git)
    
    物联沃分享整理
    物联沃-IOTWORD物联网 » STM32串口DMA环形缓冲收发详解

    发表回复