基于Proteus的STM32F401RE温度检测控制仿真系统–西安电子科技大学大二微控制器个人项目

温度检测控制仿真系统

  • 平台:stm32cubemx,Keil,proteus8.17
  • 芯片:proteus-stm32f401re,cubemx-stm32f411retx
  • 注意:两个平台芯片种类是不一样的,一样的话会仿真不了(我的电脑是这样,也有看别人的用的芯片型号一样可以仿真,见仁见智吧,提供一种方向)

    可参考7.4任务实践STM32F401RE :中断方式检测按键

    文章目录

  • 温度检测控制仿真系统
  • 系统要求
  • 建立proteus工程
  • 驱动LM061L
  • proteus原理图
  • cubemx操作
  • LCD1602的c和h文件
  • 若要修改管脚
  • 验证效果
  • Keil生成hex文件
  • 添加hex文件到芯片里
  • 开始仿真
  • 效果
  • 驱动LM35
  • proteus原理图
  • cubemx操作
  • 驱动串口
  • 下载虚拟串口软件
  • proteus原理图
  • cubemx操作
  • 晶振设置
  • 若串口初始化后LCD不显示了
  • 驱动l298
  • 理论知识
  • proteus原理图
  • cubemx操作
  • motor的c和h文件
  • 最终整理
  • 原理图
  • main函数
  • 几处设计
  • 整型数转字符串
  • 显示在LCD1602上
  • 从串口打印
  • 设置标志位
  • 避免串口重复发送
  • 系统要求

    建立proteus工程

    img


    这个芯片不需要配置供电网

    驱动LM061L

    proteus原理图

    cubemx操作

    详情可参考CubeMx+Keil+Proteus仿真STM32-LCD1602

    LCD1602的c和h文件

    LCD1602.c

    #include "LCD1602.h"
    
    
    //D0-D7设定方向:I-输入;O-输出
    void DataDir(char dir)
    {
    	GPIO_InitTypeDef GPIO_InitStruct = {0};
    	HAL_GPIO_WritePin(GPIOC, D0_Pin|D1_Pin|D2_Pin|D3_Pin|D4_Pin|D5_Pin|D6_Pin|D7_Pin, GPIO_PIN_SET);
    	GPIO_InitStruct.Pin = D0_Pin|D1_Pin|D2_Pin|D3_Pin|D4_Pin|D5_Pin|D6_Pin|D7_Pin;
    	GPIO_InitStruct.Pull = GPIO_PULLUP;
    	if(dir == 'I')
    	{
    		GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    	}
    	else if(dir == 'O')
    	{
    		GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    		GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    	}
    	HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
    }
    
    //D0-D7读数据
    uint8_t ReadData()
    {
    	uint8_t dat=0;
    	//DataDir('I');
    	if(HAL_GPIO_ReadPin(GPIOC, D0_Pin)==GPIO_PIN_SET) dat|=0x01;
    	if(HAL_GPIO_ReadPin(GPIOC, D1_Pin)==GPIO_PIN_SET) dat|=0x02;
    	if(HAL_GPIO_ReadPin(GPIOC, D2_Pin)==GPIO_PIN_SET) dat|=0x04;
    	if(HAL_GPIO_ReadPin(GPIOC, D3_Pin)==GPIO_PIN_SET) dat|=0x08;
    	if(HAL_GPIO_ReadPin(GPIOC, D4_Pin)==GPIO_PIN_SET) dat|=0x10;
    	if(HAL_GPIO_ReadPin(GPIOC, D5_Pin)==GPIO_PIN_SET) dat|=0x20;
    	if(HAL_GPIO_ReadPin(GPIOC, D6_Pin)==GPIO_PIN_SET) dat|=0x40;
    	if(HAL_GPIO_ReadPin(GPIOC, D7_Pin)==GPIO_PIN_SET) dat|=0x80;
    	return dat;
    }
    
    //D0-D7写数据
    void WriteData(uint8_t dat)
    {
    	uint16_t Set_Pins = 0, Rst_Pins = 0;
    	//DataDir('O');
    	if(dat & 0x01) Set_Pins |= D0_Pin;
    	else Rst_Pins |= D0_Pin;
    	if(dat & 0x02) Set_Pins |= D1_Pin;
    	else Rst_Pins |= D1_Pin;
    	if(dat & 0x04) Set_Pins |= D2_Pin;
    	else Rst_Pins |= D2_Pin;
    	if(dat & 0x08) Set_Pins |= D3_Pin;
    	else Rst_Pins |= D3_Pin;
    	if(dat & 0x10) Set_Pins |= D4_Pin;
    	else Rst_Pins |= D4_Pin;
    	if(dat & 0x20) Set_Pins |= D5_Pin;
    	else Rst_Pins |= D5_Pin;
    	if(dat & 0x40) Set_Pins |= D6_Pin;
    	else Rst_Pins |= D6_Pin;
    	if(dat & 0x80) Set_Pins |= D7_Pin;
    	else Rst_Pins |= D7_Pin;
    	
    	HAL_GPIO_WritePin(GPIOC, Set_Pins, GPIO_PIN_SET);
    	HAL_GPIO_WritePin(GPIOC, Rst_Pins, GPIO_PIN_RESET);
    }
    
    //LCD忙等待
    void LCD_Busy_Wait()
    {
    	uint8_t status;
    	DataDir('I');
    	RS_InstructionR();
    	RW_Read();
    	do
    	{
    		E_Set();
    		__NOP();
    		status = ReadData();
    		E_Rst();
    	}
    	while(status & 0x80);
    }
    
    //写LCD指令
    void LCD_Write_Cmd(uint8_t cmd)
    {
    	DataDir('O');
    	WriteData(cmd);
    	RS_InstructionR();
    	RW_Write();
    	E_Rst();
    	RS_InstructionR();
    	RW_Write();
    	E_Set();
    	__NOP();
    	E_Rst();
    	LCD_Busy_Wait();
    }
    
    //写LCD数据寄存器
    void LCD_Write_Data(uint8_t dat)
    {
    	DataDir('O');
    	WriteData(dat);
    	RS_DataR();
    	RW_Write();
    	E_Set();
    	__NOP();
    	E_Rst();
    	LCD_Busy_Wait();
    }
    
    //LCD初始化
    void LCD_Init()
    {
    	LCD_Write_Cmd(0x38);
    	HAL_Delay(2);
    	LCD_Write_Cmd(0x01);
    	HAL_Delay(2);
    	LCD_Write_Cmd(0x06);
    	HAL_Delay(2);
    	LCD_Write_Cmd(0x0c);
    	HAL_Delay(2);
    }
    
    //在x行(0-1),y列(0-15)显示字符串
    void LCD_ShowString(uint8_t x, uint8_t y, char *str)
    {
    	uint8_t i=0;
    	//设置显示起始位置
    	if(x == 0)
    		LCD_Write_Cmd(0x80|y);
    	else if(x == 1)
    		LCD_Write_Cmd(0xc0|y);
    	//输出字符串
    	for(i=0; i<16 && str[i]!='\0'; i++)
    	{
    		LCD_Write_Data(str[i]);
    		HAL_Delay(2);
    	}
    }
    
    
    

    LCD1602.h

    #ifndef INC_LCD1602_H_
    #define INC_LCD1602_H_
    #include "main.h"
    
    //选择数据寄存器
    #define RS_DataR() HAL_GPIO_WritePin(GPIOA, RS_Pin, GPIO_PIN_SET)
    #define RS_InstructionR() HAL_GPIO_WritePin(GPIOA, RS_Pin, GPIO_PIN_RESET)
    
    //选择指令寄存器
    //读操作
    #define RW_Read() HAL_GPIO_WritePin(GPIOA, RW_Pin, GPIO_PIN_SET)
    //写操作
    #define RW_Write() HAL_GPIO_WritePin(GPIOA, RW_Pin, GPIO_PIN_RESET)
    
    //Enable操作:高电平-读取信息;下降沿-执行指令
    #define E_Set() HAL_GPIO_WritePin(GPIOA, E_Pin, GPIO_PIN_SET)
    #define E_Rst() HAL_GPIO_WritePin(GPIOA, E_Pin, GPIO_PIN_RESET)
    
    
    void LCD_Init(void);
    
    void LCD_ShowString(uint8_t x, uint8_t y, char *str);
    
    
    
    
    #endif //INC_LCD1602_H_
    
    
    

    注意#endif之后要空一行,否则会报错

    若要修改管脚

    image-20240516051555239

    修改这几处即可。

    验证效果

    Keil生成hex文件

    image-20240516051824450

    添加hex文件到芯片里

    双击芯片后:

    image-20240516051911994

    开始仿真

    image-20240516051938652

    效果

    在main函数里添加:

    char str1[]="TEMPRATURE:";
    LCD_Init();  //初始化LCD1602
    LCD_ShowString(0,0,str1);  //LCD 显示设定字符串
    

    仿真得到:

    image-20240516052112982

    驱动LM35

    proteus原理图

    image-20240516052200721

    image-20240516052222845

    cubemx操作

    image-20240516052506629

    详细见HAL LM35单通道温度采集

    注意!

    image-20240516052436052

    这里应该是500而不是330,因为lm35的驱动电压是5v:

    image-20240516052544789

    image-20240516052609956

    驱动串口

    下载虚拟串口软件

    详细见串口模拟器VSPD(附VSPD安装包)

    proteus原理图

    image-20240516052830620

    image-20240516052850569

    cubemx操作

    image-202405160530978
    详细见STM32学习:串口通讯(proteus仿真)

    注意文章给的代码里回调函数名字写错了,修改为正确的即可

    image-20240516053103862

    晶振设置

    image-20240516053249102

    image-20240516053304830

    如果乱码的话,尽量cubemx里也设置成32m(看具体情况吧,我的没有乱码),即:

    image-20240516053408912

    若串口初始化后LCD不显示了

    配置完串口后,记得打开微库!

    image-02405160541964

    驱动l298

    理论知识

    image-20240516053506383

    image-20240516053515703

    proteus原理图

    image-20240516053551178

    image-20240516053613222

    cubemx操作

    image-20240516053650068

    motor的c和h文件

    motor.c

    #include "motor.h"
    #include "main.h"
    
    void SZhun()
    {
    	HAL_GPIO_WritePin(IN1_GPIO_Port,IN1_Pin,GPIO_PIN_SET);
    	HAL_GPIO_WritePin(IN2_GPIO_Port,IN2_Pin,GPIO_PIN_RESET);
    	HAL_GPIO_WritePin(ENA_GPIO_Port,ENA_Pin,GPIO_PIN_SET);
    }
    
    void NZhun()
    {
    	HAL_GPIO_WritePin(IN1_GPIO_Port,IN1_Pin,GPIO_PIN_RESET);
    	HAL_GPIO_WritePin(IN2_GPIO_Port,IN2_Pin,GPIO_PIN_SET);
    	HAL_GPIO_WritePin(ENA_GPIO_Port,ENA_Pin,GPIO_PIN_SET);
    }
    
    void Stop()
    {
    	HAL_GPIO_WritePin(IN1_GPIO_Port,IN1_Pin,GPIO_PIN_SET);
    	HAL_GPIO_WritePin(IN2_GPIO_Port,IN2_Pin,GPIO_PIN_SET);
    	HAL_GPIO_WritePin(ENA_GPIO_Port,ENA_Pin,GPIO_PIN_SET);
    }
    
    

    motor.h

    #ifndef __motor_H_
    #define __motor_H_
    
    void SZhun(void);//顺时针转动
    void NZhun(void);//逆时针转动
    void Stop(void);//停止转动
    
    #endif
    
    

    最终整理

    原理图

    image-20240516053951792

    main函数

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2024 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "adc.h"
    #include "usart.h"
    #include "gpio.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    #include "LCD1602.h"
    #include <stdio.h>
    #include "motor.h"
    #include <stdlib.h>
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    
    /* USER CODE BEGIN PV */
    	uint32_t AD_value;
    	int temp;
    	int last_temp=0;
    	char str[20];
    	uint8_t Rx_data = 0;
    	int Flag=0;
    	
    	char str1[]="TEMPRATURE:";
    	uint8_t str2[] = "OK!\r\n";
    	char str3[] = "";
    	
    	
    
    
    
    
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
    {
    	if(huart->Instance == USART2)
    	{
    		if(Rx_data == '!')
    		{			
    			HAL_UART_Transmit(&huart2,str2,sizeof(str2),1000);
    			Flag = 1;
    			HAL_UART_Receive_IT(&huart2,&Rx_data,1);
    		}
    	}
    }
    	
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_ADC1_Init();
      MX_USART2_UART_Init();
      /* USER CODE BEGIN 2 */
      
      
    
    	LCD_Init();  //初始化LCD1602
    	LCD_ShowString(0,0,str1);  //LCD 显示设定字符串
    
      HAL_UART_Receive_IT(&huart2,&Rx_data,1);
    
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
    	  HAL_ADC_Start(&hadc1);
    	  HAL_ADC_PollForConversion(&hadc1,50);
    	  if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1),HAL_ADC_STATE_REG_EOC))
    	  {
    		  AD_value=HAL_ADC_GetValue(&hadc1);
    		  temp=(int)AD_value*500/4095.0;		 
    	  }
    	  
    	  if(Flag == 1)
    	  {
    		  if(temp<25)
    		  {
    			  Stop();
    			  sprintf(str3, "%d", temp);
    			  LCD_ShowString(1,0,str3);
    			  
    		  }
    		  else if(temp>=25 && temp != last_temp)
    		  {
    			 SZhun();
    			 sprintf(str3, "%d℃\r\n", temp);
    			 sprintf(str1, "%d", temp);
    			 LCD_ShowString(1,0,str1);
    				HAL_UART_Transmit(&huart2, (uint8_t *)str3, strlen(str3), HAL_MAX_DELAY);	
    				last_temp = temp;
    			 
    		  }
    	  }
    	  
    	  
    	  
    	  
    	  
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Configure the main internal regulator output voltage
      */
      __HAL_RCC_PWR_CLK_ENABLE();
      __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_ON;
      RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /* USER CODE BEGIN 4 */
    
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    

    几处设计

    整型数转字符串

    显示在LCD1602上
    char str3[] = "";
    temp=(int)AD_value*500/4095.0;	
    sprintf(str3, "%d", temp);//把temp转化成字符串,存储在str3里
    LCD_ShowString(1,0,str3);
    
    从串口打印
    char str3[] = "";
    sprintf(str3, "%d℃\r\n", temp);
    HAL_UART_Transmit(&huart2, (uint8_t *)str3, strlen(str3), HAL_MAX_DELAY);
    

    这种方式可以减少显示数字的困扰,字符串显示和打印都非常方便。

    设置标志位

    image-20240516054812544

    为了发送运行命令后整个流程再运行,选择了设置标志位。

    image-20240516054942366

    image-20240516055028172

    避免串口重复发送

    举个例子,当温度一直是26℃时,很容易让串口一直发送26℃,稍显混乱,那能不能只发一次,等到升温了或者降温了,再发下一个呢?

    image-20240516055224358

    image-20240516055248124

    这样可以很好的达到效果:

    image-20240516055357213

    保证了每次相同的温度只发送一次。

    作者:愚蠢小熊猫

    物联沃分享整理
    物联沃-IOTWORD物联网 » 基于Proteus的STM32F401RE温度检测控制仿真系统–西安电子科技大学大二微控制器个人项目

    发表回复