使用STM32基于HAL库控制PWM调节LED亮度(CubeMX教程)
本文使用的是stm32f103zet6芯片。首先cubemx新建工程,然后设置rcc的Crystal/Ceramic Resonator和sys的debug选项
然后点击Timers, 选择合适的定时器以及通道(我这里选择的是Timer3,channel2)
其中的时钟源选择内部时钟,即Internal Clock; 相应的通道选择为PWM生成通道, 即PWM Generation CH2.
接下来,要设置这些个选项,因为我这里用的开发板中LED灯的一端是接的高电平,所以这里的CH Polarity极性输出选择Low。如下图所示:
这里的各个参数的含义:
Prescaler:配置定时器的分频系数,这里配置 72-1;
Counter Mode:定时器的计数模式,我们选择 UP,即向上计数模式;
Counter Period:计数周期,即自动重装载值,也就是装在 TIM3_ARR 的值,这里配置
为 500-1;
Internal Clock Division (CKD):内部时钟分频因子,这里就不设置分频了;
auto-reload preload:这里设置为 Enable,定时器自动重装载使能,即使能 TIMx_ARR 寄存器进行缓冲;
上述参数可以计算定时器的时钟频率为:
72𝑀𝐻𝑧
(72 − 1) + 1
= 1𝑀𝐻𝑧
TIM3 的溢出时间:
500
1𝑀𝐻𝑧 = 0.0005s
Trigger Output(TRGO) Parameters 用于配置触发输出(TRGO)参数,我们这里不配
置。
PWM Generation Channel2 用于配置通道 2 的参数,其中:
Mode:用于配置 PWM 的模式,这里选择 PWM mode 1,即 PWM 模式 1。另外还有PWM 模式 2,可以理解 PWM mode l 是与 PWM mode 2 模式互补的波,PWM 模式 1 为高电平时 PWM 模式 2 为低电平,反之亦然。
Pulse (32 bits value):是占空比值,即 TIM3_CCR2 的值,也就是有效电平的值,可以配置在 0-500 之间,例如配置 0。这里配置 250,即占空比为 50%。在后面的实验中,我们会对 TIMx_CCR2 寄存器写入新的值来改变占空比,从而控制 LED 逐渐点亮和熄灭。
Output compare preload:输出比较预加载项选择 Enable,即在定时器工作时是否能修改Pulse 的值,如果禁用此项,表示定时器工作时不能进行修改,只能等到更新事件到来的时候才能进行修改,所以这里选择使能。
CH Polarity:输出极性,这里我们选择 Low(LED0 是低电平有效)
然后找到该定时器通道对应的gpio口,我这里TIM3 channel2 对应的是PB5, 将LED接入,我这里用的是开发板,PB5与LED已经相连接。
接着生成代码,其中需要编辑的代码分别是tim.c和main.c中的
tim.c:
就是在 /* USER CODE BEGIN TIM3_Init 2 */后面加上 HAL_TIM_PWM_Start (&htim3, TIM_CHANNEL_2这行代码而已目的是开启定时器中的PWM);
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file tim.c
* @brief This file provides code for the configuration
* of the TIM instances.
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
TIM_HandleTypeDef htim3;
/* TIM3 init function */
void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 72-1;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 500-1;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim3) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 250;
sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
HAL_TIM_PWM_Start (&htim3, TIM_CHANNEL_2);
/* USER CODE END TIM3_Init 2 */
HAL_TIM_MspPostInit(&htim3);
}
void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{
if(tim_baseHandle->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspInit 0 */
/* USER CODE END TIM3_MspInit 0 */
/* TIM3 clock enable */
__HAL_RCC_TIM3_CLK_ENABLE();
/* USER CODE BEGIN TIM3_MspInit 1 */
/* USER CODE END TIM3_MspInit 1 */
}
}
void HAL_TIM_MspPostInit(TIM_HandleTypeDef* timHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(timHandle->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspPostInit 0 */
/* USER CODE END TIM3_MspPostInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**TIM3 GPIO Configuration
PB5 ------> TIM3_CH2
*/
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
__HAL_AFIO_REMAP_TIM3_PARTIAL();
/* USER CODE BEGIN TIM3_MspPostInit 1 */
/* USER CODE END TIM3_MspPostInit 1 */
}
}
void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{
if(tim_baseHandle->Instance==TIM3)
{
/* USER CODE BEGIN TIM3_MspDeInit 0 */
/* USER CODE END TIM3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_TIM3_CLK_DISABLE();
/* USER CODE BEGIN TIM3_MspDeInit 1 */
/* USER CODE END TIM3_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
main.c:
在这里前面先设置了两个变量, uint16_t ledrpwmval = 0;和 uint8_t dir = 1;
ledrpwmval:这是一个变量,它包含要设置的比较值。PWM 的比较值决定了 PWM 波形的高电平时间长度,从而控制输出的占空比(Duty Cycle)。
定时器3通道2的比较值用于设置 PWM 的占空比。PWM 的占空比是指高电平的持续时间与总周期的比率,通常以百分比表示。在 STM32 中,定时器的比较值用于确定 PWM 的高电平时间长度,进而控制占空比。
具体来说,对于定时器3通道2,设置比较值 ledrpwmval
将决定 PWM 波形的高电平时间长度,从而影响 PWM 输出的占空比。较大的比较值将导致更长的高电平时间,从而增加占空比,而较小的比较值将导致更短的高电平时间,减小占空比。因此,通过调整比较值,你可以控制连接到该 PWM 通道的设备或电路的输出强度或行为。
dir在这里代表方向,为1就是正向计数,为0就是反向计数,通过if语句判断来调整正向计数和反向计数,从而控制LED的亮暗交替。
main.c 的具体代码如下:
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
uint16_t ledrpwmval = 0;
uint8_t dir = 1;
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
HAL_Delay(10);
if (dir)
{
ledrpwmval++;
}
else
{
ledrpwmval--;
}
if (ledrpwmval > 300)
{
dir = 0;
}
if (ledrpwmval == 0)
{
dir = 1;
}
__HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_2, ledrpwmval);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
烧录之后即可看到LED亮暗闪烁。
作者:早睡早起(๑°3°๑)