STM32外设使用指南之超声波(一):基于Cubemx的输入捕获方法
前言
在学习stm32的外设-超声波模块(HC-SR04),遇到了一些困难,因为cubemx无法直接使用超声波的模板(需要自己改动),故写下此篇文章,提醒自己的同时也想去给小白一下建议
准备工作
外设的连接
超声波模块有四个引脚
GND–GND
TRIG–PB11
ECHO–PB10(需打开此引脚对应的定时器通道)
VCC–5V的电压(若为最小开发版需要链接stlink的5V!!!!)
1.我们需要看清楚连接的引脚这是最重要的一步
2.需要确保超声波模块连接的是5V电压
3.注意要给PB10引脚下拉电阻
cubemx的配置
这里就不详细展开了,我们只需要打开定时器的中断,并且配置其中的一个通道为输入捕获通道即可
(ECHO所连接的引脚),用到的知识点是输入捕获故不懂的小白可以先去学习这部分的知识
工作原理
我们给TRIG引脚一个10us的高电平即可触发超声波模块发射8个40khz的声波,然后ECHO端便会收到返回来的声波,这个时间就是声波来回的时间,根据这个我们便可以大概算出来这个距离,然后在发给串口即可
需要用到的相关函数
//关于定时器捕获的
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_3); /开启定时器的捕获中断
HAL_TIM_IC_Stop_IT(&htim2, TIM_CHANNEL_3); /关闭定时器的捕获中断
HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_3);/获取当前的捕获值
__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_3, TIM_INPUTCHANNELPOLARITY_RISING);/修改为上升沿捕获
__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_3, TIM_INPUTCHANNELPOLARITY_FALLING);/修改为下降沿捕获
__HAL_TIM_SET_COUNTER(&htim2,0); //设置计数寄存器的值变为0
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)/重写中断回调函数
//关于串口输出的
先重写printf函数
//支持printf函数,而不需要选择use MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};
FILE __stdout;
//定义_sys_exit()以避免使用半主机模式
void _sys_exit(int x)
{
x = x;
}
//重定义fputc函数
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (uint8_t) ch;
return ch;
}
#endif
/直接写到uart.c就好(记得引入<stdio.h>)
spritnf()用于将数据转化为字符串形式用,printf输出信息
代码的编写
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include<stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE BEGIN 0 */
uint32_t capture_Buf[2] = {0}; //存放计数值
uint8_t capture_Cnt = 0; //状态标志位
uint32_t high_time; //高电平时间
/* USER CODE END 0 */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void Supersonic_Start()
{
HAL_GPIO_WritePin(TRIG_GPIO_Port,TRIG_Pin,GPIO_PIN_SET);
HAL_Delay(5);
HAL_GPIO_WritePin(TRIG_GPIO_Port,TRIG_Pin,GPIO_PIN_RESET);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
HAL_GPIO_TogglePin(LED_G_GPIO_Port,LED_G_Pin);
switch (capture_Cnt){
case 0:
//printf("1");
capture_Cnt++;
__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_3, TIM_INPUTCHANNELPOLARITY_RISING);
HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_3); //启动输入捕获 或者: __HAL_TIM_ENABLE(&htim2);
Supersonic_Start();
break;
case 3:
//printf("4");
high_time = capture_Buf[1]- capture_Buf[0]; //高电平时间
//HAL_UART_Transmit(&huart2, (uint8_t *)high_time, 1, 0xffff); //发送高电平时间
float data = high_time*0.017;
char buf[20];
sprintf(buf,"%2.2f",data);
printf("距离是:%s cm\r\n",buf);
HAL_Delay(1000); //延时1S
//__HAL_TIM_SET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_3,0);
capture_Cnt = 0; //清空标志
break;
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE BEGIN 4 */
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if(TIM2 == htim->Instance)
{
switch(capture_Cnt){
case 1:
capture_Buf[0] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_3);//获取当前的捕获值.
__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_3, TIM_INPUTCHANNELPOLARITY_FALLING);
capture_Cnt++;
break;
case 2:
//HAL_GPIO_WritePin(LED_R_GPIO_Port,LED_R_Pin,GPIO_PIN_RESET);
capture_Buf[1] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_3);//获取当前的捕获值.
HAL_TIM_IC_Stop_IT(&htim2,TIM_CHANNEL_3); //停止捕获 或者: __HAL_TIM_DISABLE(&htim2);
__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_3, TIM_INPUTCHANNELPOLARITY_RISING);
capture_Cnt++;
break;
}
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
这段代码是有借鉴别的博主,我觉得这个定时器捕获的思路非常好,同时记得中断回调函数的重写
以及数据的清零
代码思路
首先定义状态标志量以及用于储存数据的数组,随后在主循环里我们要做两件事
第一件是启动定时器捕获,并且驱动超声波模块
第二件则是对数据清零以及处理捕获到的数据
在中断回调函数中我们需要处理的则是捕获上升沿和下降沿的数据(中间更改捕获的极性)
总结
我们在驱动外设前需要先理解该原理,否则无法成为一个合格的cv工程师,我们需要看的懂别人的代码也需要会修改别人的代码,通过这次学习我学会了如何去调试程序,如果去一个一个地方的排除错误。希望大家能够通过学习外设的同时学会如何调试,如何移植别人的代码
作者:szu-htb