STM32杂交版(HAL库、音乐盒、闹钟、点阵屏、温湿度)

一、设计描述        

        本设计精心构建了一个以STM32MP157A高性能单片机为核心控制单元的综合性嵌入式系统。该系统巧妙融合了蜂鸣器、数码管显示器、点阵屏、温湿度传感器、LED指示灯以及按键等多种外设模块,形成了一个功能丰富、操作便捷的杂交版智能设备。通过串口通信,用户可以灵活地切换系统的工作模式,轻松实现闹钟、音乐盒播放及温湿度监测与调控等基本功能。

核心硬件

  • 主控单元:采用STM32MP157A单片机,凭借其强大的处理能力和丰富的外设接口,为系统提供了坚实的硬件基础。
  • 软件平台

  • 开发工具:利用STM32CUBEIDE这一直观易用的集成开发环境,极大地提升了软件编程与调试的效率,确保了系统软件的稳定可靠。
  • 系统功能亮点

    1. 模式灵活切换:通过串口通信,用户可以轻松地在闹钟、音乐盒播放及温湿度监测三种模式之间自由切换,满足不同场景下的使用需求。

    2. 动态信息显示:点阵屏作为系统的信息展示窗口,能够根据当前的工作模式显示相应的汉字(如“钟”代表闹钟模式,“音”代表音乐盒模式,“传”可视为温湿度监测的简化标识),为用户提供了直观的操作反馈。

    3. 按键交互体验:设计中充分考虑了用户的交互体验,通过按键即可在各模式下执行对应的功能操作,如音乐盒的速度与音量调节、歌曲切换、暂停/播放控制,以及闹钟的时间调整、设置多个闹钟、关闭闹钟等。

    4. 温湿度智能调控:系统内置温湿度传感器,能够实时监测环境状况,并通过串口接收用户指令调节温湿度的上下限阈值。一旦环境参数超出设定范围,LED指示灯将亮起作为边界提示,帮助用户及时采取措施。

    二、基本配置信息

             音乐盒在之前做过所以配置不做改变:STM32音乐盒

            

    三、STM32CUBEIDE配置

    1、定时器–100ms

    2、PWM配置(蜂鸣器 — PB6)

    3. 串口配置

    注意针脚

    4. IIC配置(温湿度,数码管,点阵屏)

    5. GPIO配置(LED和按键)

    6. NVIC

    四、程序编写

    (1)音乐盒代码

            音乐盒在之前已经写过,所以这里不再重复之前的操作,我们将串口和模式转换加进去。

             STM32音乐盒

            串口音乐控制函数

    
    //串口音乐控制函数
    void music_kz(){
    	  if(EN_music == 1)//启动
    		  play_music(list,Low_volume);
    	  else
    		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
    
    
    
    	if(strcmp("music volume increase",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		Low_volume = Low_volume + Low_volume_cnt;
    		if(Low_volume >= 10)
    			Low_volume = 10;
    	}
    
    	if(strcmp("music volume reduction",(char *)uart4_data)==0){
    		Low_volume = Low_volume - Low_volume_cnt;
    		if(Low_volume <= 0)
    			Low_volume = 0;
    	}
    
    
    	if(strcmp("music speed increase",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		music_speed_i++;
    		music_speed_i = music_speed_kz(music_speed_i);
    	}
    	if(strcmp("music speed reduction",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		music_speed_i--;
    		music_speed_i = music_speed_kz(music_speed_i);
    	}
    
    	if(strcmp("music next song",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		list++;
    		if(list > list_max){
    			list = list_max;
    		}
    	}
    	if(strcmp("music previous song",(char *)uart4_data)==0){
    		list--;
    		uart4_data[0] = '0';
    		if(list < 0){
    			list = 0;
    		}
    	}
    
    	if(strcmp("music start",(char *)uart4_data)==0){
    		EN_music = 1;
    	}
    	if(strcmp("music stop",(char *)uart4_data)==0){
    		EN_music = 0;
    	}
    
    
    }
    

    按键模式控制

    用mode变量代表模式,后面三个按键同理。

    
    void EXTI0_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI0_IRQn 0 */
    
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
    	{
    
    		//每次按下解决 音量�??????? Low_volume_cnt
    		Low_volume = Low_volume + Low_volume_cnt;
    		if(Low_volume >= 10)
    			Low_volume = 0;
    	}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {
    
    		shi_clock++;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		if(shi_clock>=24)
    		{
    			shi_clock=0;
    		}
    
    		miao_shi_clock=miao_clock/10;
    		miao_ge_clock=miao_clock%10;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		buf[0]=smg_number[shi_shi_clock];
    		buf[1]=smg_number[shi_ge_clock];
    		buf[3]=smg_number[fen_shi_clock];
    		buf[4]=smg_number[fen_ge_clock];
    		buf[6]=smg_number[miao_shi_clock];
    		buf[7]=smg_number[miao_ge_clock];
    		}
      /* USER CODE END EXTI0_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
      /* USER CODE BEGIN EXTI0_IRQn 1 */
    
      /* USER CODE END EXTI0_IRQn 1 */
    }
    

    (2)模式切换

            mode变量切换

    
    void uart_mode(){
    
    	if(strcmp("mode = music",(char *)uart4_data)==0){
    		mode = 0;
    	}
    	if(strcmp("mode = clock",(char *)uart4_data)==0){
    		mode = 1;
    	}
    	if(strcmp("mode = sensor",(char *)uart4_data)==0){
    		mode = 2;
    	}
    }

    点阵屏字库

    
    uint8_t DZP_data[6][34]={
    		{0xAA,0x55,
    		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
    		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//音
    
    		{0xAA,0x55,
    		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
    		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//钟//1//
    
    		{0xAA,0x55,
    		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
    		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//传//2//
    
    };

    点阵屏显示

    		if(mode_n != mode){
    			mode_n = mode;
    			for(int i = 0; i<34;i++){
    			//printf("afgsbgafdffag");
    				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
    				HAL_Delay(2);
    			}
    		}

    (3)闹钟代码编写

            1. 基础变量

             main.c

    
    //数码管闹钟基础变量
    extern int buf[8];
    extern int shi_shi;
    extern int shi_ge ;
    extern int fen_shi;
    extern int fen_ge ;
    extern int miao_shi ;
    extern int miao_ge ;
    
    extern int miao ;
    extern int shi ;
    extern int fen;
    //闹钟保存数组
    extern int alarm_clock_array[20][4];
    extern int alarm_clock_array_cnt;

            stm32mp1xx_it.c 基础变量

    
    
    //数码管闹钟基础设置
    int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
    int buf[8] = {0};
    
    //闹钟保存数组
    int alarm_clock_array[20][4] = {0};
    int alarm_clock_array_cnt = 0;
    //实时时钟信息
    int shi_shi = 0;
    int shi_ge = 0;
    int fen_shi = 0;
    int fen_ge = 0;
    int miao_shi = 0;
    int miao_ge = 0;
    int miao = 0;
    int shi = 0;
    int fen = 0;
    
    int EN_clock = 0;//闹钟设置使能
    extern int en_clock;//用于控制闹钟响铃
    
    //闹钟设置信息
    int shi_shi_clock = 0;
    int shi_ge_clock = 0;
    int fen_shi_clock = 0;
    int fen_ge_clock = 0;
    int miao_shi_clock = 0;
    int miao_ge_clock = 0;
    int miao_clock = 0, shi_clock = 0, fen_clock = 0;
    

            2. TIM2定时器

    
    void TIM2_IRQHandler(void)
    {
      /* USER CODE BEGIN TIM2_IRQn 0 */
    	if(EN_music == 1)
    		time_100ms_cnt++;
    	else
    		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数
    
    	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
    		time_100ms_cnt = 0;
    		flag = 1;	//发�?�音节结束信�???????
    	}
    
    
    	//数码�????
    	static int smg_time_100ms = 0;
    	smg_time_100ms++;
    	if(smg_time_100ms>=10){
    		miao++;
    		smg_time_100ms = 0;
    	}
    
    
    	if (miao>=60)
    	{
    		miao=0;
    		fen++;
    		if(fen>=60)
    		{
    			fen=0;
    			shi++;
    			if(shi>=24)
    			{
    				shi=0;
    			}
    		}
    	}
    
    
    	if(miao >= 60){
    		miao = miao-60;
    		fen++;
    	}
    	if(fen>=60){
    		fen = fen-60;
    		shi ++;
    	}
    	if(shi>= 24){
    		shi = shi -24;
    
    	}
    
    
    	miao_shi=miao/10;
    	miao_ge=miao%10;
    
    	fen_shi=fen/10;
    	fen_ge=fen%10;
    
    	shi_shi=shi/10;
    	shi_ge=shi%10;
    
    
    	if(EN_clock == 0){
    	buf[0]=smg_number[shi_shi];
    	buf[1]=smg_number[shi_ge];
    	buf[3]=smg_number[fen_shi];
    	buf[4]=smg_number[fen_ge];
    	buf[6]=smg_number[miao_shi];
    	buf[7]=smg_number[miao_ge];
    	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
    	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
    	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
    	}
    	else{
    		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
    		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
    		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
    	}
    
      /* USER CODE END TIM2_IRQn 0 */
      HAL_TIM_IRQHandler(&htim2);
      /* USER CODE BEGIN TIM2_IRQn 1 */
    
      /* USER CODE END TIM2_IRQn 1 */
    }
    

            3. 按键控制设置闹钟和保存闹钟        

    
    void EXTI9_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI9_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
    		EN_music = !EN_music;
    	}
    
    	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
    		if(EN_clock == 1){
    			//闹钟设置成功
    			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
    			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
    			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
    			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
    			alarm_clock_array_cnt++;
    			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
    			EN_clock = 0;
    		}
    		else if(EN_clock == 0){
    			//设置闹钟
    			shi_shi_clock = shi_shi;
    			shi_ge_clock = shi_ge;
    			fen_shi_clock = fen_shi;
    			fen_ge_clock = fen_ge;
    			miao_shi_clock = 0;
    			miao_ge_clock = 0;
    			miao_clock = 0;
    			shi_clock = shi;
    			fen_clock = fen;
    			EN_clock = 1;
    		}
    	}
    
    
    
    
    
    
      /* USER CODE END EXTI9_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
      /* USER CODE BEGIN EXTI9_IRQn 1 */
    
      /* USER CODE END EXTI9_IRQn 1 */
    }
    

            4. 时分按键+

    
    void EXTI0_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI0_IRQn 0 */
    
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
    	{
    
    		//每次按下解决 音量�??????? Low_volume_cnt
    		Low_volume = Low_volume + Low_volume_cnt;
    		if(Low_volume >= 10)
    			Low_volume = 0;
    	}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {
    
    		shi_clock++;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		if(shi_clock>=24)
    		{
    			shi_clock=0;
    		}
    
    		miao_shi_clock=miao_clock/10;
    		miao_ge_clock=miao_clock%10;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		buf[0]=smg_number[shi_shi_clock];
    		buf[1]=smg_number[shi_ge_clock];
    		buf[3]=smg_number[fen_shi_clock];
    		buf[4]=smg_number[fen_ge_clock];
    		buf[6]=smg_number[miao_shi_clock];
    		buf[7]=smg_number[miao_ge_clock];
    		}
      /* USER CODE END EXTI0_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
      /* USER CODE BEGIN EXTI0_IRQn 1 */
    
      /* USER CODE END EXTI0_IRQn 1 */
    }
    
    /**
      * @brief This function handles EXTI line1 interrupt.
      */
    void EXTI1_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI1_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
    		{
    		music_speed_i++;
    		music_speed_i = music_speed_kz(music_speed_i);
    		}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
    		fen_clock++;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		if(fen_clock>=60)
    		{
    			fen_clock=0;
    			shi_clock++;
    			fen_shi_clock=fen_clock/10;
    			fen_ge_clock=fen_clock%10;
    			shi_shi_clock=shi_clock/10;
    			shi_ge_clock=shi_clock%10;
    			if(shi_clock>=24)
    			{
    				shi_clock=0;
    			}
    		}
    
    		miao_shi_clock=miao_clock/10;
    		miao_ge_clock=miao_clock%10;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		buf[0]=smg_number[shi_shi_clock];
    		buf[1]=smg_number[shi_ge_clock];
    		buf[3]=smg_number[fen_shi_clock];
    		buf[4]=smg_number[fen_ge_clock];
    		buf[6]=smg_number[miao_shi_clock];
    		buf[7]=smg_number[miao_ge_clock];
    		}
      /* USER CODE END EXTI1_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
      /* USER CODE BEGIN EXTI1_IRQn 1 */
    
      /* USER CODE END EXTI1_IRQn 1 */
    }
    
    /**
      * @brief This function handles EXTI line2 interrupt.
      */
    void EXTI2_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI2_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
    		{
    			list++;
    			if(list > list_max){
    				list = 0;
    			}
    		}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
    			//在此处关闭闹�????
    			en_clock = 0;
    		}
      /* USER CODE END EXTI2_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
      /* USER CODE BEGIN EXTI2_IRQn 1 */
    
      /* USER CODE END EXTI2_IRQn 1 */
    }
    

            5. 时钟相加函数(将后三的时分秒加入左三的对应时分秒)

    //通过输入不同的n,返回shi fen miao
    int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){
    
    	time_miao = time_miao + add_miao;
    	time_fen = time_fen + time_miao/60;
    	time_miao = time_miao % 60;
    
    	time_fen = time_fen + add_fen;
    	time_shi = time_shi + time_fen / 60;
    	time_fen = time_fen%60;
    
    	time_shi = time_shi + add_shi;
    	time_shi = time_shi%24;
    
    	if(n == 0) return time_shi;
    	if(n == 1) return time_fen;
    	if(n == 2) return time_miao;
    
    	return -1;
    }
    

            6. 提取对应字符串后两位数字

    
    // 函数定义:从字符串中提取两位数字
    int extract_two_digits(const char *str, const char *prefix, int *value) {
        char *pos = strstr(str, prefix); // 查找前缀的位�?????
        if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败
    
        // 跳过前缀的长度,找到数字�?????始的位置
        pos += strlen(prefix);
    
        // �?????查接下来的两个字符是否是数字
        if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
            // 转换字符为数�?????
            *value = (pos[0] - '0') * 10 + (pos[1] - '0');
            return 1; // 成功提取,返�?????1
        }
    
        return 0; // 提取失败,返�?????0
    }

            7. 串口设置目前时钟,定时闹钟,延时闹钟

    
    //判断是否到底闹钟
    int en_clock = 0;//用于控制闹钟响铃
    int en_clock_cnt = 0;
    int clock_end[3] = {0};//记录闹钟无人时关闭的时间
    //串口设置闹钟
    void uart_clock(){
    	int ci = 0;
    	int ci_n = 0;
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);
    
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		shi = ci_n;
    	}
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		fen = ci_n;
    	}
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		miao = ci_n;
    	}
    
    	//设置�?????个多少时间后的闹�?????
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
    		alarm_clock_array_cnt++;
    	}
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
    		alarm_clock_array_cnt++;
    	}
    
    	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
    		alarm_clock_array_cnt++;
    	}
    
    	// time shi = 12;fen = 10;miao = 12;music = 1;
    	ci = 0;
    	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
    	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
    	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
    	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
    	if(ci == 3){
    		//完美对应
    		uart4_data[0] = '1';
    		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
    		if(ci > list_max && ci<0) //如果大于音乐总数
    			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3
    
    		alarm_clock_array_cnt++;
    	}
    
    
    	if(strcmp("clock delay list",(char *)uart4_data)==0){
    
    		uart4_data[0] = '0';
    		for(int i = 0; i< alarm_clock_array_cnt;i++){
    			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
    			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
    															alarm_clock_array[i][1],
    															alarm_clock_array[i][2]
    															);
    		}
    	}
    
    	//读取关闭第几位闹�?????
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
    	if(ci == 1){
    		alarm_clock_array[ci_n][0] = -1;
    		alarm_clock_array[ci_n][1] = -1;
    		alarm_clock_array[ci_n][2] = -1;
    	}
    
    	//关闭闹钟
    	if(strcmp("clock stop stop",(char *)uart4_data)==0){
    		en_clock = 0;
    	}
    
    
    	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
    }

            8. 闹钟实现和停止(数码管显示)

    
    void alarm_clock(){
        //时钟显示(数码管)
    	static int pos = 0;
    	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
    	HAL_Delay(1);
    	pos++;
    	if(pos == 3 && pos == 6) pos++;
    	if(pos == 8) pos = 0;
    
    
    	uart_clock();//调用串口控制
    
    	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
    		//int cnt_clock = 0;
    		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
    			en_clock_cnt = j;
    			en_clock = 1;
    			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
    			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
    			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
    			break;
    		}
    	}
    
    	//当闹钟响�?????30S
    	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
    		en_clock = 0;//关闭闹钟
    		//EN_music = 1;
    	}
    
    	if(en_clock == 1 ){
    			motor(10);
    			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
    		}
    		else{
    			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
    			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
    		}
    
    }

    (4)温湿度代码编写

            1. 温湿度基础变量     

    
    uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
    //0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
    uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
    uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;
    
    int humidity_min = 50;//能仍受最低干燥程度
    int temperature_max = 50;//能仍受的最高温度
    int en_t = 0; //温度使能
    int en_r = 0; //湿度使能

            2. 温湿度计算

    
    //计算出温湿度
    void Temperature_humidity(){
    	//湿度
    			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
    			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
    			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
    			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
    			  HAL_Delay(30);
    			  //进行高低字节转换
    			  RH_Code_low=(RH_Code & 0xff);
    			  RH_Code_high=(RH_Code >> 8)& 0xff;
    			  RH_Code=(RH_Code_low << 8)+RH_Code_high;
    
    			  //温度
    			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
    			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
    			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
    			  HAL_Delay(30);
    			  //进行高低字节转换
    			  Temp_Code_low=(Temp_Code & 0xff);
    			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
    			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;
    
    			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
    			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
    			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    			  //串口输出温湿�???????
    			  HAL_Delay(2);
    }
    

            3. 温湿度串口控制

    
    void uart_sensor(){
    	int tr=0;
    	int tr_i = 0;
    	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
    	if(tr != 0){
    		humidity_min = tr_i;
    	}
    
    	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
    	if(tr != 0){
    		temperature_max = tr_i;
    	}
    
    
    	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
    		en_t = 1;
    	}
    	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
    		en_r = 1;
    	}
    	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
    		en_t = 0;
    	}
    	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
    		en_r = 0;
    	}
    
    
    	if(strcmp("sensor list",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    		printf("sensor en_t : %d\r\n",en_t);
    		printf("sensor en_r : %d\r\n",en_r);
    		printf("sensor temperature_max : %d\r\n",temperature_max);
    		printf("sensor humidity_min : %d\r\n",humidity_min);
    	}
    
    	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    	}
    
    
    }

            4. 温湿度主函数

    
    void sensor(){
    	static int iii = 0;
    	if(iii == 0){
    		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
    		HAL_Delay(2);
    		iii++;
    	}
    	Temperature_humidity();
    	uart_sensor();
    
    	if(RH_Code < humidity_min && en_r == 1){
    		//motor(10);
    		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
    	}
    	else{
    		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
    	}
    
    	if(Temp_Code/100 >= temperature_max && en_t == 1){
    		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
    	}
    	else{
    		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
    	}
    }

    (5)主函数

    
    void end_main(){
    
    	  tone_init(); //初始化音量频�??????
    	  list_max = music_init();//更新乐谱
    	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
    	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
    	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2
    
    	  //1 使能串口空闲中断
    	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
    	  //2.使能串口中断接收数据
    	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
    	  int mode_n = 1;
    
    	while(1){
    		music_kz();
    
    		alarm_clock();
    		uart_mode();
    
    		sensor();
    
    		if(mode_n != mode){
    			mode_n = mode;
    			for(int i = 0; i<34;i++){
    			//printf("afgsbgafdffag");
    				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
    				HAL_Delay(2);
    			}
    		}
    
    	}
    }

    五、总代码

    main.c

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
      * All rights reserved.</center></h2>
      *
      * This software component is licensed by ST under BSD 3-Clause license,
      * the "License"; You may not use this file except in compliance with the
      * License. You may obtain a copy of the License at:
      *                        opensource.org/licenses/BSD-3-Clause
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    
    
    #include <string.h>
    
    
    uint8_t rx_buf[200]={0};	//接收不定长数
    uint8_t uart4_data[200] = {0};
    
    extern int mode;	//模式
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    I2C_HandleTypeDef hi2c1;
    
    TIM_HandleTypeDef htim2;
    TIM_HandleTypeDef htim3;
    TIM_HandleTypeDef htim4;
    
    UART_HandleTypeDef huart4;
    
    /* USER CODE BEGIN PV */
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    static void MX_GPIO_Init(void);
    static void MX_I2C1_Init(void);
    static void MX_TIM2_Init(void);
    static void MX_TIM4_Init(void);
    static void MX_UART4_Init(void);
    static void MX_TIM3_Init(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    
    
    
    //重写标准输出函数
    int __io_putchar(int ch)
    {
    	HAL_UART_Transmit(&huart4, (uint8_t *)&ch, 1, 10);
    	return ch;
    }
    
    
    // 自定义空闲中断处理函�????????
    void uart4_idle_func(void)
    {
    	int len = 0;
    	//判定 是否为空闲中�????????
    	if(  __HAL_UART_GET_FLAG(&huart4, UART_FLAG_IDLE) == SET )
    	{
    		// 清除空闲中断标志,因为是自己定义的函数 系统不会清标
    		__HAL_UART_CLEAR_IDLEFLAG(&huart4);
    		// 计算接收数据的长
    		len = sizeof(rx_buf) - huart4.RxXferCount;
    		//第二个参数是 还剩下的空间
    		// 打印接收到时数据  数据处理
    		//printf("uart rx len = %d, data: %s\r\n",len, rx_buf);
    
    	    // 使用strcpy复制字符�????????
    	    strcpy((char *)uart4_data, (char *)rx_buf);
    
    	    printf("%s instructions success\r\n", uart4_data);
    		// 准备接收下一次数�?????????
    		memset(rx_buf,0,len); // 清理接收容器
    		//重置接收指针 剩余容器大小
    		huart4.pRxBuffPtr = rx_buf;
    		huart4.RxXferCount = sizeof(rx_buf);
    	}
    }
    
    //控制马达
    void motor(int d){
    	HAL_GPIO_TogglePin(GPIOF, GPIO_PIN_6);//
    	HAL_Delay(d);
    }
    
    
    // 音乐
    // 音乐盒基�??????变量
    extern int time_100ms_cnt; //0.1s计数�??????
    extern int Beat_speed;		//节拍速度,代表半个节拍需要多少个0.1s
    extern int Beat_speed_n;	//实际执行的节拍数
    
    extern int Beat_num;		//这个�??????个音�??????要多少个 半拍
    extern int flag; 			//当其等于 1 时,表示�??????个音结束
    extern int EN_music ;				//使能信号,用于开启整个音乐盒
    extern int list ;			//音乐列表
    extern int list_max ;		//音乐总数
    extern int Low_volume ;		//音量大小
    extern int Low_volume_cnt;
    extern int music_speed_i; 	//音乐播放速度模式保存
    extern int music_speed_kz(int i);
    
    int tone[3][8];
    //初始化高中低音频�??????
    void tone_init(){
    	tone[1][0] = 0;	//不执行音�??????
    	tone[1][1] = 191;
    	tone[1][2] = 170;
    	tone[1][3] = 151;
    	tone[1][4] = 143;
    	tone[1][5] = 127;
    	tone[1][6] = 113;
    	tone[1][7] = 101;
        // 低音 (Low)
        for (int i = 0; i < 8; i++) {
            tone[0][i] = tone[1][i] * 2; // 只是低音 近似的�??
        }
    
        // 高音 (High)
        for (int i = 0; i < 8; i++) {
            tone[2][i] = tone[1][i] / 2; // 只是高音  近似的�??
        }
    }
    
    #define MAX_unit_num 200 //�????????大乐谱数�????????
    //创建结构体保存乐�????????
    struct music_unit{
    	char name[50];		//乐谱名称
    	int unit[MAX_unit_num];		//发什么音
    	int unit_HL[MAX_unit_num];	//发高音或者其�????????
    	int time[MAX_unit_num];		//发音时间
    	//int time_4[MAX_unit_num];	//判断是否�????????1/4�????????
    	int num;			//记录有多少个
    }music[25];
    
    //创建乐谱 返回有多少首音乐
    int music_init(){
    	int cnt = 0;
    	//第一首音�???????? 生日快乐
    	strcpy(music[0].name, "生日快乐"); 				// 使用strcpy复制字符�???????? 给音乐命�????????
    	int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
    								5,5,6,3,1,7, 6,4,4,3,1,2,1,
    								0,0};		//基础乐谱
    	int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
    								2,2,2,2,2,2, 2,2,2,2,2,2,3,
    								1,1};		//乐谱节拍
    	music[0].num = 29;										//乐谱总数
    	int music0_unit_HL[29] = {1,1,
    								0,0,0,0,1,0, 0,0,0,0,1,1,
    								0,0,1,1,1,0, 0,1,1,1,1,1,1,
    								1,1}; 	//乐谱全为中音
    
    	//第二首音�???????? �????????闪一闪亮晶晶
    	cnt++;
    	strcpy(music[1].name, "�????????闪一闪亮晶晶"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
    	int music1_unit[44] = {0,
    						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
    						   5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
    						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
    						   0};		//基础乐谱
    	int music1_time[44] = {2,
    						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
    						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
    						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
    						   2};		//乐谱节拍
    	int music1_unit_HL[44] =
    						  {1,
    						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
    						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
    						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
    						   1}; 		//乐谱全为中音
    	music[1].num = 44;											//乐谱总数
    
    
    
    	//第三首音�???????? 两只老虎
    	cnt++;
    	strcpy(music[2].name, "两只老虎"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
    	int music2_unit[38] = {0,
    						   1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
    						   5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
    						   1,5,1,1, 0};		//基础乐谱
    	int music2_time[38] = {2,
    						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
    						   0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
    						   1,1,1,2, 2};		//乐谱节拍
    	int music2_unit_HL[38] =
    						  {1,
    					       1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
    						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
    						   1,0,1,1, 1}; 		//乐谱�????????   中音
    	music[2].num = 38;											//乐谱总数
    
    
    	//第四首音�???????? 青花瓷片�????????
    	cnt++;
    	strcpy(music[3].name, "青花瓷片"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
    	int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
    						    2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
    						    2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
    						    2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
    						    3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0};		//基础乐谱
    
    	int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
    							0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
    							2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
    							0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
    							0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1};		//乐谱节拍
    
    	for(int i =0;i<100;i++)
    		music3_time[i] = music3_time[i]+1;
    
    	int music3_unit_HL[100] =
    						  { 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
    							1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
    							1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
    							1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
    							1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; 		//乐谱�????????   中音
    	music[3].num = 100;											//乐谱总数
    
    
    
    
    	for (int i = 0; i < MAX_unit_num; i++) {
    		//将乐谱保存进结构�????????
    		if(i<music[0].num){//确保数据正确
    			music[0].unit[i] =music0_unit[i];
    			music[0].unit_HL[i] =music0_unit_HL[i];
    			music[0].time[i] =music0_time[i];
    		}
    
    
    		//将乐谱保存进结构�????????
    		if(i<music[1].num){//确保数据正确
    			music[1].unit[i] =music1_unit[i];
    			music[1].unit_HL[i] =music1_unit_HL[i];
    			music[1].time[i] =music1_time[i];
    		}
    
    		//将乐谱保存进结构�????????
    		if(i<music[2].num){//确保数据正确
    			music[2].unit[i] =music2_unit[i];
    			music[2].unit_HL[i] =music2_unit_HL[i];
    			music[2].time[i] =music2_time[i];
    		}
    
    
    		//将乐谱保存进结构�????????
    		if(i<music[3].num){//确保数据正确
    			music[3].unit[i] =music3_unit[i];
    			music[3].unit_HL[i] =music3_unit_HL[i];
    			music[3].time[i] =music3_time[i];
    		}
    	}
    
    
    	return cnt;
    }
    
    //播放�???? N首音�???? 音量�???? X 0 - 100
    void play_music(int n, int x){
    	static int ni = 0; 		//用于判断 是否换了音乐
    	static int cnt = 0;		//记录播放到哪�????�???? 音节
    	if(ni != n ){//如果音乐换了
    		ni = n;
    		cnt = 0;
    		__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
    		HAL_Delay(1000);//
    	}
    
    	//
    	int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]];	//获取频率
    	if(flag == 1){	//接受到一个音节结�????
    		flag = 0;	//复位
    		Beat_num = music[n].time[cnt]; 				//这个音需要多少个半拍
    		//LED_BEEP(music[n].unit[cnt]);				//LED随音节变动�?�变�????
    
    		if(music[n].time[cnt] == 0){//如果�???? 1/4�????
    			Beat_speed_n = Beat_speed /2;
    		}
    		else{//如果没有1/4�????
    			Beat_speed_n = Beat_speed;
    		}
    
    		//if(value != 0)//如果有频率�?�执行,没有者只更新 时间�????
    		__HAL_TIM_SET_AUTORELOAD(&htim4,value);		//自动加载频率�????
    
    		cnt ++; 	//可进行下�????次音�????
    		if(cnt >= music[n].num){ //如果�????个音节播放完�????
    			cnt = 0;//重新播放
    			//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
    			//HAL_Delay(500);//
    		}
    	}
    	//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
    	__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
    }
    
    
    //串口音乐控制函数
    void music_kz(){
    	  if(EN_music == 1)//启动
    		  play_music(list,Low_volume);
    	  else
    		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
    
    
    
    	if(strcmp("music volume increase",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		Low_volume = Low_volume + Low_volume_cnt;
    		if(Low_volume >= 10)
    			Low_volume = 10;
    	}
    
    	if(strcmp("music volume reduction",(char *)uart4_data)==0){
    		Low_volume = Low_volume - Low_volume_cnt;
    		if(Low_volume <= 0)
    			Low_volume = 0;
    	}
    
    
    	if(strcmp("music speed increase",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		music_speed_i++;
    		music_speed_i = music_speed_kz(music_speed_i);
    	}
    	if(strcmp("music speed reduction",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		music_speed_i--;
    		music_speed_i = music_speed_kz(music_speed_i);
    	}
    
    	if(strcmp("music next song",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		list++;
    		if(list > list_max){
    			list = list_max;
    		}
    	}
    	if(strcmp("music previous song",(char *)uart4_data)==0){
    		list--;
    		uart4_data[0] = '0';
    		if(list < 0){
    			list = 0;
    		}
    	}
    
    	if(strcmp("music start",(char *)uart4_data)==0){
    		EN_music = 1;
    	}
    	if(strcmp("music stop",(char *)uart4_data)==0){
    		EN_music = 0;
    	}
    
    
    }
    
    
    //数码管闹�?????
    extern int buf[8];
    extern int shi_shi;
    extern int shi_ge ;
    extern int fen_shi;
    extern int fen_ge ;
    extern int miao_shi ;
    extern int miao_ge ;
    
    extern int miao ;
    extern int shi ;
    extern int fen;
    //闹钟保存数组
    extern int alarm_clock_array[20][4];
    extern int alarm_clock_array_cnt;
    
    //通过输入不同的n,返回shi fen miao
    int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){
    
    	time_miao = time_miao + add_miao;
    	time_fen = time_fen + time_miao/60;
    	time_miao = time_miao % 60;
    
    	time_fen = time_fen + add_fen;
    	time_shi = time_shi + time_fen / 60;
    	time_fen = time_fen%60;
    
    	time_shi = time_shi + add_shi;
    	time_shi = time_shi%24;
    
    	if(n == 0) return time_shi;
    	if(n == 1) return time_fen;
    	if(n == 2) return time_miao;
    
    	return -1;
    }
    
    
    //将字符解成数�?????
    int char_number(uint8_t c){
        if(c >= '0' && c <= '9')
            return c-'0';
        else
            return -1;
    }
    
    // zfc 为当前传入字符串
    // zfc_n为比较字符串
    // num为如果两字符串最初相等,则取字符串后面多少位的数�?????
    int number_char_come(uint8_t zfc[200], uint8_t zfc_n[200], int num){
    	size_t len = strlen((char *)zfc_n);//无符号整数类�?????
    
    	int cnt = 0;
    	for(int i = 0;i < len;i++){
    		if(zfc[i] != zfc_n[i]) return -1; //不相�?????
    		else cnt++;
    	}
    	if(cnt != len)	 return -1;//两字符串不等
    
    	size_t shen_len = strlen((char *)zfc) - len;//剩余字符串长�?????
    	size_t hig_num = 0;//用以保存实际有效位数
    
    	if(shen_len > num) hig_num = num;
    	else hig_num = shen_len;
    	//int number[200];
    
    
    
        int number1 = 0;
        int multiplier = 1; // 用于计算10的幂的变�?????
    	for(int i = len + hig_num - 1; i >= len;i--){
    		//number[i-len] = char_number(zfc[i]);
    		if(char_number(zfc[i])== -1) {
    			printf("\r\r\r number error\r\n");
    			return -1;
    		}
    
    		multiplier = multiplier*10;
    		number1 = number1 + char_number(zfc[i])*multiplier;
    	}
    
    	return number1;
    
    }
    
    // 函数定义:从字符串中提取两位数字
    int extract_two_digits(const char *str, const char *prefix, int *value) {
        char *pos = strstr(str, prefix); // 查找前缀的位�?????
        if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败
    
        // 跳过前缀的长度,找到数字�?????始的位置
        pos += strlen(prefix);
    
        // �?????查接下来的两个字符是否是数字
        if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
            // 转换字符为数�?????
            *value = (pos[0] - '0') * 10 + (pos[1] - '0');
            return 1; // 成功提取,返�?????1
        }
    
        return 0; // 提取失败,返�?????0
    }
    
    
    
    //判断是否到底闹钟
    int en_clock = 0;//用于控制闹钟响铃
    int en_clock_cnt = 0;
    int clock_end[3] = {0};//记录闹钟无人时关闭的时间
    //串口设置闹钟
    void uart_clock(){
    	int ci = 0;
    	int ci_n = 0;
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);
    
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		shi = ci_n;
    	}
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		fen = ci_n;
    	}
    
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
    	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		miao = ci_n;
    	}
    
    	//设置�?????个多少时间后的闹�?????
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
    		alarm_clock_array_cnt++;
    	}
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
    		alarm_clock_array_cnt++;
    	}
    
    	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
    	if(ci == 1){
    		uart4_data[0] = '1';
    		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
    		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
    		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
    		alarm_clock_array_cnt++;
    	}
    
    	// time shi = 12;fen = 10;miao = 12;music = 1;
    	ci = 0;
    	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
    	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
    	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
    	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
    	if(ci == 3){
    		//完美对应
    		uart4_data[0] = '1';
    		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
    		if(ci > list_max && ci<0) //如果大于音乐总数
    			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3
    
    		alarm_clock_array_cnt++;
    	}
    
    
    	if(strcmp("clock delay list",(char *)uart4_data)==0){
    
    		uart4_data[0] = '0';
    		for(int i = 0; i< alarm_clock_array_cnt;i++){
    			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
    			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
    															alarm_clock_array[i][1],
    															alarm_clock_array[i][2]
    															);
    		}
    	}
    
    	//读取关闭第几位闹�?????
    	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
    	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
    	if(ci == 1){
    		alarm_clock_array[ci_n][0] = -1;
    		alarm_clock_array[ci_n][1] = -1;
    		alarm_clock_array[ci_n][2] = -1;
    	}
    
    	//关闭闹钟
    	if(strcmp("clock stop stop",(char *)uart4_data)==0){
    		en_clock = 0;
    	}
    
    
    	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
    }
    void smg_xians(){
    
    }
    
    
    void alarm_clock(){
    
    	static int pos = 0;
    	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
    	HAL_Delay(1);
    	pos++;
    	if(pos == 3 && pos == 6) pos++;
    	if(pos == 8) pos = 0;
    
    
    	uart_clock();//调用串口控制
    
    	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
    		//int cnt_clock = 0;
    		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
    			en_clock_cnt = j;
    			en_clock = 1;
    			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
    			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
    			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
    			break;
    		}
    	}
    
    	//当闹钟响�?????30S
    	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
    		en_clock = 0;//关闭闹钟
    		//EN_music = 1;
    	}
    
    	if(en_clock == 1 ){
    			motor(10);
    			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
    		}
    		else{
    			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
    			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
    		}
    
    }
    
    
    uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
    //0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
    uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
    uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;
    
    int humidity_min = 50;//能仍受的�?????低干燥程�?????
    int temperature_max = 50;//能仍受的�?????高温�?????
    int en_t = 0; //温度使能
    int en_r = 0; //湿度使能
    
    //计算出温湿度
    void Temperature_humidity(){
    	//湿度
    			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
    			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
    			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
    			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
    			  HAL_Delay(30);
    			  //进行高低字节转换
    			  RH_Code_low=(RH_Code & 0xff);
    			  RH_Code_high=(RH_Code >> 8)& 0xff;
    			  RH_Code=(RH_Code_low << 8)+RH_Code_high;
    
    			  //温度
    			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
    			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
    			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
    			  HAL_Delay(30);
    			  //进行高低字节转换
    			  Temp_Code_low=(Temp_Code & 0xff);
    			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
    			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;
    
    			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
    			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
    			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    			  //串口输出温湿�???????
    			  HAL_Delay(2);
    }
    
    
    
    void uart_sensor(){
    	int tr=0;
    	int tr_i = 0;
    	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
    	if(tr != 0){
    		humidity_min = tr_i;
    	}
    
    	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
    	if(tr != 0){
    		temperature_max = tr_i;
    	}
    
    
    	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
    		en_t = 1;
    	}
    	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
    		en_r = 1;
    	}
    	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
    		en_t = 0;
    	}
    	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
    		en_r = 0;
    	}
    
    
    	if(strcmp("sensor list",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    		printf("sensor en_t : %d\r\n",en_t);
    		printf("sensor en_r : %d\r\n",en_r);
    		printf("sensor temperature_max : %d\r\n",temperature_max);
    		printf("sensor humidity_min : %d\r\n",humidity_min);
    	}
    
    	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
    		uart4_data[0] = '0';
    		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
    	}
    
    
    }
    
    
    void sensor(){
    	static int iii = 0;
    	if(iii == 0){
    		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
    		HAL_Delay(2);
    		iii++;
    	}
    	Temperature_humidity();
    	uart_sensor();
    
    	if(RH_Code < humidity_min && en_r == 1){
    		//motor(10);
    		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
    	}
    	else{
    		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
    	}
    
    	if(Temp_Code/100 >= temperature_max && en_t == 1){
    		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
    	}
    	else{
    		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
    	}
    }
    
    
    uint8_t DZP_data[6][34]={
    		{0xAA,0x55,
    		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
    		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//�?//0//
    
    		{0xAA,0x55,
    		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
    		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//�?//1//
    
    		{0xAA,0x55,
    		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
    		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//�?//2//
    
    };
    
    void uart_mode(){
    
    	if(strcmp("mode = music",(char *)uart4_data)==0){
    		mode = 0;
    	}
    	if(strcmp("mode = clock",(char *)uart4_data)==0){
    		mode = 1;
    	}
    	if(strcmp("mode = sensor",(char *)uart4_data)==0){
    		mode = 2;
    	}
    }
    void end_main(){
    
    	  tone_init(); //初始化音量频�??????
    	  list_max = music_init();//更新乐谱
    	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
    	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
    	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2
    
    	  //1 使能串口空闲中断
    	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
    	  //2.使能串口中断接收数据
    	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
    	  int mode_n = 1;
    
    	while(1){
    		music_kz();
    
    		alarm_clock();
    		uart_mode();
    
    		sensor();
    
    		if(mode_n != mode){
    			mode_n = mode;
    			for(int i = 0; i<34;i++){
    			//printf("afgsbgafdffag");
    				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
    				HAL_Delay(2);
    			}
    		}
    
    	}
    }
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      if(IS_ENGINEERING_BOOT_MODE())
      {
        /* Configure the system clock */
        SystemClock_Config();
      }
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_I2C1_Init();
      MX_TIM2_Init();
      MX_TIM4_Init();
      MX_UART4_Init();
      MX_TIM3_Init();
      /* USER CODE BEGIN 2 */
    
      end_main();
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
    
    	  //printf("afsgbhdn\t\n");
    	  //HAL_Delay(500);
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_ON;
      RCC_OscInitStruct.HSICalibrationValue = 16;
      RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
      RCC_OscInitStruct.LSIState = RCC_LSI_ON;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
      RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
      RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
      RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
      /** RCC Clock Config
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                                  |RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
                                  |RCC_CLOCKTYPE_PCLK5;
      RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
      RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
      RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
      RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
      RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
      RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
      RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
      RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
      RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /**
      * @brief I2C1 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_I2C1_Init(void)
    {
    
      /* USER CODE BEGIN I2C1_Init 0 */
    
      /* USER CODE END I2C1_Init 0 */
    
      /* USER CODE BEGIN I2C1_Init 1 */
    
      /* USER CODE END I2C1_Init 1 */
      hi2c1.Instance = I2C1;
      hi2c1.Init.Timing = 0x10707DBC;
      hi2c1.Init.OwnAddress1 = 0;
      hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
      hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
      hi2c1.Init.OwnAddress2 = 0;
      hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
      hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
      hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
      if (HAL_I2C_Init(&hi2c1) != HAL_OK)
      {
        Error_Handler();
      }
      /** Configure Analogue filter
      */
      if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
      {
        Error_Handler();
      }
      /** Configure Digital filter
      */
      if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN I2C1_Init 2 */
    
      /* USER CODE END I2C1_Init 2 */
    
    }
    
    /**
      * @brief TIM2 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_TIM2_Init(void)
    {
    
      /* USER CODE BEGIN TIM2_Init 0 */
    
      /* USER CODE END TIM2_Init 0 */
    
      TIM_ClockConfigTypeDef sClockSourceConfig = {0};
      TIM_MasterConfigTypeDef sMasterConfig = {0};
    
      /* USER CODE BEGIN TIM2_Init 1 */
    
      /* USER CODE END TIM2_Init 1 */
      htim2.Instance = TIM2;
      htim2.Init.Prescaler = 6400-1;
      htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
      htim2.Init.Period = 1000-1;
      htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
      htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
      if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
      {
        Error_Handler();
      }
      sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
      if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
      {
        Error_Handler();
      }
      sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
      sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
      if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN TIM2_Init 2 */
    
      /* USER CODE END TIM2_Init 2 */
    
    }
    
    /**
      * @brief TIM3 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_TIM3_Init(void)
    {
    
      /* USER CODE BEGIN TIM3_Init 0 */
    
      /* USER CODE END TIM3_Init 0 */
    
      TIM_ClockConfigTypeDef sClockSourceConfig = {0};
      TIM_MasterConfigTypeDef sMasterConfig = {0};
    
      /* USER CODE BEGIN TIM3_Init 1 */
    
      /* USER CODE END TIM3_Init 1 */
      htim3.Instance = TIM3;
      htim3.Init.Prescaler = 6399;
      htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
      htim3.Init.Period = 10000-1;
      htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
      htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
      if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
      {
        Error_Handler();
      }
      sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
      if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
      {
        Error_Handler();
      }
      sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
      sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
      if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN TIM3_Init 2 */
    
      /* USER CODE END TIM3_Init 2 */
    
    }
    
    /**
      * @brief TIM4 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_TIM4_Init(void)
    {
    
      /* USER CODE BEGIN TIM4_Init 0 */
    
      /* USER CODE END TIM4_Init 0 */
    
      TIM_ClockConfigTypeDef sClockSourceConfig = {0};
      TIM_MasterConfigTypeDef sMasterConfig = {0};
      TIM_OC_InitTypeDef sConfigOC = {0};
    
      /* USER CODE BEGIN TIM4_Init 1 */
    
      /* USER CODE END TIM4_Init 1 */
      htim4.Instance = TIM4;
      htim4.Init.Prescaler = 639;
      htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
      htim4.Init.Period = 100-1;
      htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
      htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
      if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
      {
        Error_Handler();
      }
      sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
      if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
      {
        Error_Handler();
      }
      sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
      sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
      if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
      {
        Error_Handler();
      }
      sConfigOC.OCMode = TIM_OCMODE_PWM1;
      sConfigOC.Pulse = 0;
      sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
      sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
      if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN TIM4_Init 2 */
    
      /* USER CODE END TIM4_Init 2 */
      HAL_TIM_MspPostInit(&htim4);
    
    }
    
    /**
      * @brief UART4 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_UART4_Init(void)
    {
    
      /* USER CODE BEGIN UART4_Init 0 */
    
      /* USER CODE END UART4_Init 0 */
    
      /* USER CODE BEGIN UART4_Init 1 */
    
      /* USER CODE END UART4_Init 1 */
      huart4.Instance = UART4;
      huart4.Init.BaudRate = 115200;
      huart4.Init.WordLength = UART_WORDLENGTH_8B;
      huart4.Init.StopBits = UART_STOPBITS_1;
      huart4.Init.Parity = UART_PARITY_NONE;
      huart4.Init.Mode = UART_MODE_TX_RX;
      huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
      huart4.Init.OverSampling = UART_OVERSAMPLING_16;
      huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
      huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
      huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
      if (HAL_UART_Init(&huart4) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
      {
        Error_Handler();
      }
      if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN UART4_Init 2 */
    
      /* USER CODE END UART4_Init 2 */
    
    }
    
    /**
      * @brief GPIO Initialization Function
      * @param None
      * @retval None
      */
    static void MX_GPIO_Init(void)
    {
      GPIO_InitTypeDef GPIO_InitStruct = {0};
    
      /* GPIO Ports Clock Enable */
      __HAL_RCC_GPIOF_CLK_ENABLE();
      __HAL_RCC_GPIOC_CLK_ENABLE();
      __HAL_RCC_GPIOI_CLK_ENABLE();
      __HAL_RCC_GPIOG_CLK_ENABLE();
      __HAL_RCC_GPIOB_CLK_ENABLE();
      __HAL_RCC_GPIOE_CLK_ENABLE();
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1|GPIO_PIN_6, GPIO_PIN_RESET);
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
    
      /*Configure GPIO pins : PF1 PF6 */
      GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_6;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
      HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
    
      /*Configure GPIO pin : PC7 */
      GPIO_InitStruct.Pin = GPIO_PIN_7;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
      HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
    
      /*Configure GPIO pins : PI11 PI10 */
      GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_10;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
      HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
    
      /*Configure GPIO pins : PG2 PG0 PG1 */
      GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
      GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
    
      /*Configure GPIO pin : PE9 */
      GPIO_InitStruct.Pin = GPIO_PIN_9;
      GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
    
      /* EXTI interrupt init*/
      HAL_NVIC_SetPriority(EXTI0_IRQn, 3, 0);
      HAL_NVIC_EnableIRQ(EXTI0_IRQn);
    
      HAL_NVIC_SetPriority(EXTI1_IRQn, 3, 0);
      HAL_NVIC_EnableIRQ(EXTI1_IRQn);
    
      HAL_NVIC_SetPriority(EXTI2_IRQn, 3, 0);
      HAL_NVIC_EnableIRQ(EXTI2_IRQn);
    
      HAL_NVIC_SetPriority(EXTI9_IRQn, 2, 0);
      HAL_NVIC_EnableIRQ(EXTI9_IRQn);
    
    }
    
    /* USER CODE BEGIN 4 */
    
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
    

    stm32mp1xx_it.c

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file    stm32mp1xx_it.c
      * @brief   Interrupt Service Routines.
      ******************************************************************************
      * @attention
      *
      * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
      * All rights reserved.</center></h2>
      *
      * This software component is licensed by ST under BSD 3-Clause license,
      * the "License"; You may not use this file except in compliance with the
      * License. You may obtain a copy of the License at:
      *                        opensource.org/licenses/BSD-3-Clause
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "stm32mp1xx_it.h"
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN TD */
    int mode = 0;	//模式
    extern void uart4_idle_func(void);
    extern void smg_xians();
    // 音乐盒基�?????变量
    int time_100ms_cnt = 0; //0.1s计数�?????
    int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
    int Beat_speed_n = 0;	//实际执行的节拍数
    
    int Beat_num = 2;		//这个�?????个音�?????要多少个 半拍
    int flag = 0; 			//当其等于 1 时,表示�?????个音结束
    int EN_music = 0;				//使能信号,用于开启整个音乐盒
    int list = 0;			//音乐列表
    int list_max = 0;		//音乐总数
    int Low_volume = 5;		//音量大小
    int Low_volume_cnt = 3;	//音量大小增加�?????
    int music_speed_i = 0; 	//音乐播放速度模式保存
    // 音乐播放速度控制函数
    int music_speed_kz(int i){
    	//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
    				switch(i){
    				case 0:{
    					Beat_speed = 5;	//0.5s半个节拍,正�?????+�??????�度
    					break;
    				}
    				case 1:{
    					Beat_speed = 4;	//1.2倍数
    					break;
    				}
    				case 2:{
    					Beat_speed = 3;	//约等�??????? 1.5倍数
    					break;
    				}
    				case 3:{
    					Beat_speed = 1;	//约等�??????? 2 倍数
    					break;
    				}
    				case 4:{
    					Beat_speed = 6;	//约等�??????? 0.8 倍数
    					break;
    				}
    				case 5:{
    					Beat_speed = 7;	//约等�??????? 0.6 倍数
    					break;
    				}
    				default:{
    					Beat_speed = 5;	//0.5s半个节拍,正常�?�度
    					i=0;
    					break;
    				}
    				}
    	return i;
    }
    
    //数码管闹�????
    int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
    int buf[8] = {0};
    
    //闹钟保存数组
    int alarm_clock_array[20][4] = {0};
    int alarm_clock_array_cnt = 0;
    //实时时钟信息
    int shi_shi = 0;
    int shi_ge = 0;
    int fen_shi = 0;
    int fen_ge = 0;
    int miao_shi = 0;
    int miao_ge = 0;
    int miao = 0;
    int shi = 0;
    int fen = 0;
    
    int EN_clock = 0;//闹钟设置使能
    extern int en_clock;//用于控制闹钟响铃
    
    //闹钟设置信息
    int shi_shi_clock = 0;
    int shi_ge_clock = 0;
    int fen_shi_clock = 0;
    int fen_ge_clock = 0;
    int miao_shi_clock = 0;
    int miao_ge_clock = 0;
    int miao_clock = 0, shi_clock = 0, fen_clock = 0;
    
    /* USER CODE END TD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    /* USER CODE BEGIN PV */
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    
    /* USER CODE END 0 */
    
    /* External variables --------------------------------------------------------*/
    extern TIM_HandleTypeDef htim2;
    extern TIM_HandleTypeDef htim3;
    extern UART_HandleTypeDef huart4;
    /* USER CODE BEGIN EV */
    
    /* USER CODE END EV */
    
    /******************************************************************************/
    /*           Cortex-M4 Processor Interruption and Exception Handlers          */
    /******************************************************************************/
    /**
      * @brief This function handles Non maskable interrupt.
      */
    void NMI_Handler(void)
    {
      /* USER CODE BEGIN NonMaskableInt_IRQn 0 */
    
      /* USER CODE END NonMaskableInt_IRQn 0 */
      /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
      while (1)
      {
      }
      /* USER CODE END NonMaskableInt_IRQn 1 */
    }
    
    /**
      * @brief This function handles Hard fault interrupt.
      */
    void HardFault_Handler(void)
    {
      /* USER CODE BEGIN HardFault_IRQn 0 */
    
      /* USER CODE END HardFault_IRQn 0 */
      while (1)
      {
        /* USER CODE BEGIN W1_HardFault_IRQn 0 */
        /* USER CODE END W1_HardFault_IRQn 0 */
      }
    }
    
    /**
      * @brief This function handles Memory management fault.
      */
    void MemManage_Handler(void)
    {
      /* USER CODE BEGIN MemoryManagement_IRQn 0 */
    
      /* USER CODE END MemoryManagement_IRQn 0 */
      while (1)
      {
        /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
        /* USER CODE END W1_MemoryManagement_IRQn 0 */
      }
    }
    
    /**
      * @brief This function handles Pre-fetch fault, memory access fault.
      */
    void BusFault_Handler(void)
    {
      /* USER CODE BEGIN BusFault_IRQn 0 */
    
      /* USER CODE END BusFault_IRQn 0 */
      while (1)
      {
        /* USER CODE BEGIN W1_BusFault_IRQn 0 */
        /* USER CODE END W1_BusFault_IRQn 0 */
      }
    }
    
    /**
      * @brief This function handles Undefined instruction or illegal state.
      */
    void UsageFault_Handler(void)
    {
      /* USER CODE BEGIN UsageFault_IRQn 0 */
    
      /* USER CODE END UsageFault_IRQn 0 */
      while (1)
      {
        /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
        /* USER CODE END W1_UsageFault_IRQn 0 */
      }
    }
    
    /**
      * @brief This function handles System service call via SWI instruction.
      */
    void SVC_Handler(void)
    {
      /* USER CODE BEGIN SVCall_IRQn 0 */
    
      /* USER CODE END SVCall_IRQn 0 */
      /* USER CODE BEGIN SVCall_IRQn 1 */
    
      /* USER CODE END SVCall_IRQn 1 */
    }
    
    /**
      * @brief This function handles Debug monitor.
      */
    void DebugMon_Handler(void)
    {
      /* USER CODE BEGIN DebugMonitor_IRQn 0 */
    
      /* USER CODE END DebugMonitor_IRQn 0 */
      /* USER CODE BEGIN DebugMonitor_IRQn 1 */
    
      /* USER CODE END DebugMonitor_IRQn 1 */
    }
    
    /**
      * @brief This function handles Pendable request for system service.
      */
    void PendSV_Handler(void)
    {
      /* USER CODE BEGIN PendSV_IRQn 0 */
    
      /* USER CODE END PendSV_IRQn 0 */
      /* USER CODE BEGIN PendSV_IRQn 1 */
    
      /* USER CODE END PendSV_IRQn 1 */
    }
    
    /**
      * @brief This function handles System tick timer.
      */
    void SysTick_Handler(void)
    {
      /* USER CODE BEGIN SysTick_IRQn 0 */
    
      /* USER CODE END SysTick_IRQn 0 */
      HAL_IncTick();
      /* USER CODE BEGIN SysTick_IRQn 1 */
    
      /* USER CODE END SysTick_IRQn 1 */
    }
    
    /******************************************************************************/
    /* STM32MP1xx Peripheral Interrupt Handlers                                    */
    /* Add here the Interrupt Handlers for the used peripherals.                  */
    /* For the available peripheral interrupt handler names,                      */
    /* please refer to the startup file (startup_stm32mp1xx.s).                    */
    /******************************************************************************/
    
    /**
      * @brief This function handles EXTI line0 interrupt.
      */
    void EXTI0_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI0_IRQn 0 */
    
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
    	{
    
    		//每次按下解决 音量�??????? Low_volume_cnt
    		Low_volume = Low_volume + Low_volume_cnt;
    		if(Low_volume >= 10)
    			Low_volume = 0;
    	}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {
    
    		shi_clock++;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		if(shi_clock>=24)
    		{
    			shi_clock=0;
    		}
    
    		miao_shi_clock=miao_clock/10;
    		miao_ge_clock=miao_clock%10;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		buf[0]=smg_number[shi_shi_clock];
    		buf[1]=smg_number[shi_ge_clock];
    		buf[3]=smg_number[fen_shi_clock];
    		buf[4]=smg_number[fen_ge_clock];
    		buf[6]=smg_number[miao_shi_clock];
    		buf[7]=smg_number[miao_ge_clock];
    		}
      /* USER CODE END EXTI0_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
      /* USER CODE BEGIN EXTI0_IRQn 1 */
    
      /* USER CODE END EXTI0_IRQn 1 */
    }
    
    /**
      * @brief This function handles EXTI line1 interrupt.
      */
    void EXTI1_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI1_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
    		{
    		music_speed_i++;
    		music_speed_i = music_speed_kz(music_speed_i);
    		}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
    		fen_clock++;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		if(fen_clock>=60)
    		{
    			fen_clock=0;
    			shi_clock++;
    			fen_shi_clock=fen_clock/10;
    			fen_ge_clock=fen_clock%10;
    			shi_shi_clock=shi_clock/10;
    			shi_ge_clock=shi_clock%10;
    			if(shi_clock>=24)
    			{
    				shi_clock=0;
    			}
    		}
    
    		miao_shi_clock=miao_clock/10;
    		miao_ge_clock=miao_clock%10;
    		fen_shi_clock=fen_clock/10;
    		fen_ge_clock=fen_clock%10;
    		shi_shi_clock=shi_clock/10;
    		shi_ge_clock=shi_clock%10;
    		buf[0]=smg_number[shi_shi_clock];
    		buf[1]=smg_number[shi_ge_clock];
    		buf[3]=smg_number[fen_shi_clock];
    		buf[4]=smg_number[fen_ge_clock];
    		buf[6]=smg_number[miao_shi_clock];
    		buf[7]=smg_number[miao_ge_clock];
    		}
      /* USER CODE END EXTI1_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
      /* USER CODE BEGIN EXTI1_IRQn 1 */
    
      /* USER CODE END EXTI1_IRQn 1 */
    }
    
    /**
      * @brief This function handles EXTI line2 interrupt.
      */
    void EXTI2_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI2_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
    		{
    			list++;
    			if(list > list_max){
    				list = 0;
    			}
    		}
    
    	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
    			//在此处关闭闹�????
    			en_clock = 0;
    		}
      /* USER CODE END EXTI2_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
      /* USER CODE BEGIN EXTI2_IRQn 1 */
    
      /* USER CODE END EXTI2_IRQn 1 */
    }
    
    /**
      * @brief This function handles TIM2 global interrupt.
      */
    void TIM2_IRQHandler(void)
    {
      /* USER CODE BEGIN TIM2_IRQn 0 */
    	if(EN_music == 1)
    		time_100ms_cnt++;
    	else
    		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数
    
    	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
    		time_100ms_cnt = 0;
    		flag = 1;	//发�?�音节结束信�???????
    	}
    
    
    	//数码�????
    	static int smg_time_100ms = 0;
    	smg_time_100ms++;
    	if(smg_time_100ms>=10){
    		miao++;
    		smg_time_100ms = 0;
    	}
    
    
    	if (miao>=60)
    	{
    		miao=0;
    		fen++;
    		if(fen>=60)
    		{
    			fen=0;
    			shi++;
    			if(shi>=24)
    			{
    				shi=0;
    			}
    		}
    	}
    
    
    	if(miao >= 60){
    		miao = miao-60;
    		fen++;
    	}
    	if(fen>=60){
    		fen = fen-60;
    		shi ++;
    	}
    	if(shi>= 24){
    		shi = shi -24;
    
    	}
    
    
    	miao_shi=miao/10;
    	miao_ge=miao%10;
    
    	fen_shi=fen/10;
    	fen_ge=fen%10;
    
    	shi_shi=shi/10;
    	shi_ge=shi%10;
    
    
    	if(EN_clock == 0){
    	buf[0]=smg_number[shi_shi];
    	buf[1]=smg_number[shi_ge];
    	buf[3]=smg_number[fen_shi];
    	buf[4]=smg_number[fen_ge];
    	buf[6]=smg_number[miao_shi];
    	buf[7]=smg_number[miao_ge];
    	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
    	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
    	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
    	}
    	else{
    		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
    		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
    		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
    	}
    
      /* USER CODE END TIM2_IRQn 0 */
      HAL_TIM_IRQHandler(&htim2);
      /* USER CODE BEGIN TIM2_IRQn 1 */
    
      /* USER CODE END TIM2_IRQn 1 */
    }
    
    /**
      * @brief This function handles TIM3 global interrupt.
      */
    void TIM3_IRQHandler(void)
    {
      /* USER CODE BEGIN TIM3_IRQn 0 */
    	smg_xians();
      /* USER CODE END TIM3_IRQn 0 */
      HAL_TIM_IRQHandler(&htim3);
      /* USER CODE BEGIN TIM3_IRQn 1 */
    
      /* USER CODE END TIM3_IRQn 1 */
    }
    
    /**
      * @brief This function handles UART4 global interrupt.
      */
    void UART4_IRQHandler(void)
    {
      /* USER CODE BEGIN UART4_IRQn 0 */
    	uart4_idle_func();
    
      /* USER CODE END UART4_IRQn 0 */
      HAL_UART_IRQHandler(&huart4);
      /* USER CODE BEGIN UART4_IRQn 1 */
    
      /* USER CODE END UART4_IRQn 1 */
    }
    
    /**
      * @brief This function handles EXTI line9 interrupt.
      */
    void EXTI9_IRQHandler(void)
    {
      /* USER CODE BEGIN EXTI9_IRQn 0 */
    	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
    		EN_music = !EN_music;
    	}
    
    	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
    		if(EN_clock == 1){
    			//闹钟设置成功
    			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
    			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
    			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
    			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
    			alarm_clock_array_cnt++;
    			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
    			EN_clock = 0;
    		}
    		else if(EN_clock == 0){
    			//设置闹钟
    			shi_shi_clock = shi_shi;
    			shi_ge_clock = shi_ge;
    			fen_shi_clock = fen_shi;
    			fen_ge_clock = fen_ge;
    			miao_shi_clock = 0;
    			miao_ge_clock = 0;
    			miao_clock = 0;
    			shi_clock = shi;
    			fen_clock = fen;
    			EN_clock = 1;
    		}
    	}
    
    
    
    
    
    
      /* USER CODE END EXTI9_IRQn 0 */
      HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
      /* USER CODE BEGIN EXTI9_IRQn 1 */
    
      /* USER CODE END EXTI9_IRQn 1 */
    }
    
    /**
      * @brief This function handles RCC wake-up interrupt.
      */
    void RCC_WAKEUP_IRQHandler(void)
    {
      /* USER CODE BEGIN RCC_WAKEUP_IRQn 0 */
    
      /* USER CODE END RCC_WAKEUP_IRQn 0 */
      HAL_RCC_WAKEUP_IRQHandler();
      /* USER CODE BEGIN RCC_WAKEUP_IRQn 1 */
    
      /* USER CODE END RCC_WAKEUP_IRQn 1 */
    }
    
    /* USER CODE BEGIN 1 */
    
    /* USER CODE END 1 */
    /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
    

            串口指令集

    mode = music
    mode = clock
    mode = sensor
    
    music volume increase
    music volume reduction
    music speed increase
    music speed reduction
    music next song
    music previous song
    music start
    music stop
    
    clock shi = 
    clock fen = 
    clock miao = 
    clock delay shi = 
    clock delay fen = 
    clock delay miao = 
    
    time shi = ;fen = ;miao = 
    clock delay list
    clock stop list = 
    clock stop stop
    
    sensor  humidity_min = 
    sensor  temperature_max = 
    sensor temperature start
    sensor humidity start
    sensor temperature stop
    sensor humidity stop
    sensor list
    sensor Temp_Code RH_Code

    六、部分效果展示

    STM32杂交版

    七、总结

            本设计是一个高度集成的基于STM32MP157A单片机的多功能系统,通过整合蜂鸣器、数码管、点阵屏、温湿度传感器、LED灯、按键等多种模块,实现了丰富的交互与功能。系统利用STM32CUBEIDE作为开发平台,充分发挥了STM32MP157A单片机的高性能与灵活性,展现了其在嵌入式系统设计中的广泛应用潜力。

    设计总结:

    1. 模块化设计:本设计采用了模块化设计思路,将不同功能模块(如闹钟、音乐盒、温湿度监测)独立设计后整合在一起,不仅提高了系统的可维护性和可扩展性,还使得各个模块的功能实现更加清晰明了。

    2. 灵活的模式切换:通过串口通信实现不同模式(闹钟、音乐盒、温湿度监测)之间的灵活切换,使得用户可以根据需要轻松选择所需功能,提高了系统的用户友好性和实用性。

    3. 多样化的显示与交互:点阵屏在不同模式下显示不同的汉字(如“钟”、“音”、“传”),直观展示了当前的工作模式,增强了用户体验。同时,按键和串口控制相结合的方式,使得用户可以通过多种途径对系统进行操作,如调节音乐播放速度、音量、切换歌曲,调整闹钟时间、设置多个闹钟等,极大地丰富了系统的交互方式。

    4. 温湿度监测与调节:系统集成了温湿度传感器,能够实时监测环境温湿度,并通过串口调节温湿度上下限,当温湿度超出设定范围时,通过LED灯进行边界提示,实现了对环境的智能监测与调节。

    5. 高效的开发平台:采用STM32CUBEIDE作为开发平台,利用其强大的代码编辑、编译、调试功能,以及丰富的库函数和示例项目,极大地提高了开发效率,降低了开发难度。

    6. 综合应用能力的展现:本设计不仅展示了STM32MP157A单片机在嵌入式系统设计中的强大功能,还体现了设计者在硬件选型、电路设计、软件编程、系统调试等方面的综合应用能力。

    综上所述,本设计是一个集多功能性、灵活性、用户友好性于一体的嵌入式系统,充分展示了STM32MP157A单片机在复杂系统设计中的广泛应用前景和潜力。通过本设计的实施,不仅加深了对嵌入式系统设计的理解,还提升了解决实际问题的能力。

    参考资料:

            1. STM32简易音乐播放器(HAL库)

    作者:0X78

    物联沃分享整理
    物联沃-IOTWORD物联网 » STM32杂交版(HAL库、音乐盒、闹钟、点阵屏、温湿度)

    发表回复