文章目录

  • 前言
  • 一、下载再分析网格数据
  • 二、具体步骤
  • 1.引入库
  • 2.读入数据并筛选数据
  • 三、效果图

  • 前言

    绘制西太和亚洲区域夏季和冬季平均风速风向矢量图,并叠加平均降雨填充底图


    一、下载再分析网格数据

    1,风速风向数据,主要是在美国的NASA网站下载的NCEP\NCAR数据集,包含了1948-至今平均逐月的数据(u_wnd.nc; v_wnd.nc).下载链接(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html),具体步骤可以参考这篇博文(https://blog.csdn.net/qq_58252159/article/details/131946548)
    2, 降雨数据也是,下载链接(https://psl.noaa.gov/data/gridded/data.gpcc.html#detail)

    二、具体步骤

    1.引入库

    代码如下:

    import xarray as xr
    import numpy as np
    import datetime as dt
    import cartopy.crs as ccrs
    import cartopy.feature as cfeature
    import cartopy.mpl.ticker as cticker
    import matplotlib.pyplot as plt
    

    2.读入数据并筛选数据

    代码如下:

    import xarray as xr
    import numpy as np
    import datetime as dt
    import cartopy.crs as ccrs
    import cartopy.feature as cfeature
    import cartopy.mpl.ticker as cticker
    import matplotlib.pyplot as plt
    # 导入降雨数据
    f_p = xr.open_dataset('C:\\Users\\huain\\Desktop\\BY\\precip.mon.mean.nc')
    #筛选降雨数据冬季的月份
    p = f_p.precip.loc[f_p.time.dt.month.isin([6,7,8])].loc['1979-01-01':'2023-12-01']
    p_cli = np.array(p).reshape(45,3,72,144).mean((0))
    lats = f_p.lat
    lons = f_p.lon
    
    #导入纬向风的数据
    f_u = xr.open_dataset('C:\\Users\\huain\\Desktop\\BY\\uwnd.mon.mean.nc')
    #筛选冬季纬向风的数据
    u = f_u.uwnd.loc[f_u.time.dt.month.isin([6,7,8])].loc['1979-01-01':'2023-12-01']
    u_cli = np.array(u).reshape(45,3,73,144).mean((0))
    lat = f_u.lat
    lon = f_u.lon
    #导入经向风的数据
    f_v = xr.open_dataset('C:\\Users\\huain\\Desktop\\BY\\vwnd.mon.mean.nc')
    #筛选冬季经向风的数据
    v = f_v.vwnd.loc[f_v.time.dt.month.isin([6,7,8])].loc['1979-01-01':'2023-12-01']
    v_cli = np.array(v).reshape(45,3,73,144).mean((0))
    #计算风速
    windspeed = np.sqrt(u_cli**2 + v_cli**2)
    # ax.quiver(lon[::2],lat[::2],u_cli[0,::2,::2],v_cli[0,::2,::2],transform=ccrs.PlateCarree(),scale=150,color='r')
    #画图
    fig = plt.figure(figsize=(12,8))
    proj = ccrs.PlateCarree(central_longitude=180)
    leftlon, rightlon, lowerlat, upperlat = (80,200,-30,60)
    img_extent = [leftlon, rightlon, lowerlat, upperlat]
    
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.6],projection = proj)
    ax.set_extent(img_extent, crs=ccrs.PlateCarree())
    ax.add_feature(cfeature.COASTLINE) 
    ax.set_xticks(np.arange(leftlon,rightlon,10), crs=ccrs.PlateCarree())
    ax.set_yticks(np.arange(lowerlat,upperlat,10), crs=ccrs.PlateCarree())
    lon_formatter = cticker.LongitudeFormatter()
    lat_formatter = cticker.LatitudeFormatter()
    ax.xaxis.set_major_formatter(lon_formatter)
    ax.yaxis.set_major_formatter(lat_formatter)
    q = ax.quiver(lon[::2],lat[::2],u_cli[0,::2,::2],v_cli[0,::2,::2],transform=ccrs.PlateCarree(),scale=150,color='g',width=0.002,headwidth=4,headlength=7)
    #添加风速比例尺
    ax.quiverkey(q, 1, 1.02, 10, '10 m/s', labelpos='E',coordinates='axes')
    #添加图名
    ax.set_title('995Pa Average wind and percpitation 1979-2023 Summer-JJA')
    #绘制降雨填充图
    c = ax.contourf(lons,lats,p_cli[0], cmap='Blues', levels=30, extend='both', add_colorbar=True, transform=ccrs.PlateCarree(),zorder=0)
      
    # 添加颜色条  
    cbar = fig.colorbar(c, drawedges=True, ax=ax, location='right', shrink=0.95, pad=0.01, spacing='uniform', label='Average precipitation (mm)')  
    cbar.ax.tick_params(labelsize=10)  # 设置色标尺标签大小 
    # 添加一个采样点位(129°E,17°N)  
    sample_point = ax.plot(129, 17, 'ro', transform=ccrs.PlateCarree(), markersize=8)  
      
    # 为采样点添加标签  
    ax.annotate('WPS-1/2', xy=(129, 17), xytext=(20, 20),  
                textcoords='offset points', ha='left', va='bottom',  
                bbox=dict(boxstyle='round', fc='w', ec='0.5', lw=2),  
                arrowprops=dict(facecolor='black', arrowstyle='->'),  
                transform=ccrs.PlateCarree()) 
    
      
    

    三、效果图

    作者:拓云者也

    物联沃分享整理
    物联沃-IOTWORD物联网 » Python绘制风速风场图

    发表回复