`iot-predictive-analytics` 开源项目使用指南

开源项目 iot-predictive-analytics 使用教程

iot-predictive-analyticsMethod for Predicting failures in Equipment using Sensor data. Sensors mounted on devices like IoT devices, Automated manufacturing like Robot arms, Process monitoring and Control equipment etc., collect and transmit data on a continuous basis which is Time stamped.项目地址:https://gitcode.com/gh_mirrors/io/iot-predictive-analytics

1. 项目的目录结构及介绍

iot-predictive-analytics/
├── data/
│   └── README.md
├── notebooks/
│   └── Predictive_Maintenance_Using_IoT_Sensor_Data.ipynb
├── src/
│   ├── config/
│   │   └── config.py
│   ├── models/
│   │   └── model.py
│   ├── utils/
│   │   └── utils.py
│   └── main.py
├── .gitignore
├── LICENSE
├── README.md
└── requirements.txt
  • data/: 存放项目所需的数据文件。
  • notebooks/: 包含 Jupyter Notebook 文件,用于数据分析和模型训练。
  • src/: 项目的主要源代码目录。
  • config/: 存放配置文件。
  • models/: 存放模型相关的代码。
  • utils/: 存放工具函数和辅助代码。
  • main.py: 项目的启动文件。
  • .gitignore: Git 忽略文件列表。
  • LICENSE: 项目许可证。
  • README.md: 项目说明文档。
  • requirements.txt: 项目依赖包列表。
  • 2. 项目的启动文件介绍

    src/main.py 是项目的启动文件,负责初始化配置、加载数据、训练模型和进行预测。以下是该文件的主要功能:

    import config.config as config
    from models.model import train_model, predict
    from utils.utils import load_data, preprocess_data
    
    def main():
        # 加载配置
        cfg = config.load_config()
        
        # 加载数据
        data = load_data(cfg['data_path'])
        
        # 数据预处理
        processed_data = preprocess_data(data)
        
        # 训练模型
        model = train_model(processed_data)
        
        # 进行预测
        predictions = predict(model, processed_data)
        
        # 输出预测结果
        print(predictions)
    
    if __name__ == "__main__":
        main()
    

    3. 项目的配置文件介绍

    src/config/config.py 是项目的配置文件,用于存储项目的各种配置参数。以下是该文件的主要内容:

    import yaml
    
    def load_config(config_path='config.yaml'):
        with open(config_path, 'r') as f:
            config = yaml.safe_load(f)
        return config
    
    config = load_config()
    

    配置文件 config.yaml 的内容示例如下:

    data_path: 'data/sensor_data.csv'
    model_params:
      learning_rate: 0.01
      epochs: 100
      batch_size: 32
    
  • data_path: 数据文件的路径。
  • model_params: 模型训练的参数,包括学习率、迭代次数和批次大小。
  • 通过以上配置文件,可以灵活地调整项目的数据路径和模型参数,以适应不同的需求。

    iot-predictive-analyticsMethod for Predicting failures in Equipment using Sensor data. Sensors mounted on devices like IoT devices, Automated manufacturing like Robot arms, Process monitoring and Control equipment etc., collect and transmit data on a continuous basis which is Time stamped.项目地址:https://gitcode.com/gh_mirrors/io/iot-predictive-analytics

    作者:倪燃喆Queenie

    物联沃分享整理
    物联沃-IOTWORD物联网 » `iot-predictive-analytics` 开源项目使用指南

    发表回复