Python读取CSV文件的五种全面方法_最新软件测试算法面试指南(含面试大解析)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以戳这里获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
第二招:用nametuple
上面的第一招其实是最简单的,下面我们用nametuple 来包裹一下这个生成的row数据。
第三招:用tuple类型转换
如果我们对csv数据每一行的类型都非常清楚的话,嘿嘿可以用一个设定好的数据格式转换头来对数据进行转换。
操作的步骤其实跟上面差不多,就是对数据结果的清洗处理稍微不一样。这里非常巧妙的zip来构造一个嵌套的数据列表,然后用convert(data)把csv文件里面每一行的数据进行类型转换,这招真的不错!
看一下结果:
第四招:用DictReader
上面用的nametuple其实也是一个数据的映射,有没有什么方法可以直接把csv 的内容用映射的方法读取,直接出来一个字典,还真有的,来看一下代码:
是不是非常简捷,原来csv模块直接内置了DictReader(),按照字典的方法进行读取,然后生成一个有序的字典,看一下结果:
有兴趣的可以看一下这个DictReader()的源码,它其实一个内部构造的迭代器类,在内部的__next__其实也是用的OrderedDict(zip(self.fieldnames, row))来生成的。
第五招:用字典转换
如果我们需要对这个csv里面的数据进行清洗,因为读出来的时候都是字符串,我们需要更新为特定的数据类型,这个时候也可以用字典转换这一招,也是非常巧妙的,我们看一下源码:
原来的数据价格Price和成交量,我希望最后读取生成的是一个浮点型数据和整形的数据,这么搞呢,用一个字典来巧妙的更新key即可。
参考链接 :
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以戳这里获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
作者:普通网友