Python:lambda 函数详解 以及使用

一、lambda 语法

lambda 函数的语法只包含一个语句,表现形式如下:

lambda [arg1 [,arg2,…..argn]]:expression

其中,lambda 是 Python 预留的关键字,[arg…] 和 expression 由用户自定义。
具体如下:
[arg…] 是参数列表,它的结构与 Python 中函数(function)的参数列表是一样的。
[arg…] 可以有非常多的形式。例如:

a, b
a=1, b=2
*args
**kwargs
a, b=1, *args

expression 是一个参数表达式,表达式中出现的参数需要在[arg......]中有定义,并且表达式只能是单行的,只能有一个表达式。
以下都是合法的表达式:

1
None
a + b
sum(a)
1 if a >10 else 0

二、lambda 特性

  • lambda 函数是匿名的:
  •         所谓匿名函数,通俗地说就是没有名字的函数。lambda函数没有名字。

  • lambda 函数有输入和输出:
  •         输入是传入到参数列表argument_list的值,输出是根据表达式expression计算得到的值。

  • lambda 函数拥有自己的命名空间:
  •         不能访问自己参数列表之外或全局命名空间里的参数,只能完成非常简单的功能。
    常见的lambda函数示例:

    lambda x, y: x*y                      # 函数输入是x和y,输出是它们的积x*y
    lambda:None                          # 函数没有输入参数,输出是None
    lambda *args: sum(args)        # 输入是任意个数参数,输出是它们的和(隐性要求输入参数必须能进行算术运算)
    lambda **kwargs: 1                # 输入是任意键值对参数,输出是1

    三、lambda 常见用法

            由于lambda语法是固定的,其本质上只有一种用法,即定义一个lambda函数。
            在实际中,根据这个lambda函数应用场景的不同,可以将lambda函数的用法扩展为以下几种:

    1、将lambda函数赋值给一个变量,通过这个变量间接调用该lambda函数。
    栗子:

    add = lambda x, y: x+y

            以上相当于定义了加法函数lambda x, y: x+y,并将其赋值给变量add,这样变量add就指向了具有加法功能的函数。
    这时我们如果执行add(1, 2),其输出结果就为 3。

    2、将lambda函数赋值给其他函数,从而将其他函数用该lambda函数替换。
    栗子:

    # 为了把标准库time中的函数sleep的功能屏蔽(Mock),我们可以在程序初始化时调用:
    time.sleep=lambda x: None
    # 这样,在后续代码中调用time库的sleep函数将不会执行原有的功能。
    # 例如:
    time.sleep(3)    # 程序不会休眠 3 秒钟,而是因为lambda输出为None,所以这里结果是什么都不做

    3、将lambda函数作为参数传递给其他函数。
    典型的用法就是下面我们常见的几种高阶函数。

    四、lambda 用法之高阶函数

    1、map() 函数

    描述:
    map() 会根据提供的函数对指定序列做映射。
    第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新列表。
    语法:

    map(function, iterable, …)

    参数:
    function —-> 函数
    iterable —-> 一个或多个序列
    返回值:
    Python 3.x 版本返回的是迭代器
    栗子:

    # ===========一般写法:===========
    # 1、计算平方数
    def square(x):
        return x ** 2

    map(square, [1,2,3,4,5])    # 计算列表各个元素的平方
    # 结果:
    [1, 4, 9, 16, 25]

    # ===========匿名函数写法:============
    # 2、计算平方数,lambda 写法
    map(lambda x: x ** 2, [1, 2, 3, 4, 5])
    # 结果:
    [1, 4, 9, 16, 25]     

    # 3、提供两个列表,将其相同索引位置的列表元素进行相加
    map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
    # 结果:
    [3, 7, 11, 15, 19]

    2、reduce() 函数

    描述:
    reduce() 函数会对参数序列中元素进行累积。
    函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。

    语法:

    reduce(function, iterable[, initializer])

    参数:
    function  —-> 函数,有两个参数
    iterable   —-> 可迭代对象
    initializer —-> 可选,初始参数
    返回值:
    返回函数计算结果。

    实例:

    # ===========一般写法:===========
    # 1、两数相加
    def add(x, y):            
        return x + y

    reduce(add, [1, 3, 5, 7, 9])    # 计算列表元素和:1+3+5+7+9
    # 结果:
    25

    """
    ===========执行步骤解析:===========
    调用 reduce(add, [1, 3, 5, 7, 9])时,reduce函数将做如下计算:
    1    先计算头两个元素:f(1, 3),结果为4;
    2    再把结果和第3个元素计算:f(4, 5),结果为9;
    3    再把结果和第4个元素计算:f(9, 7),结果为16;
    4    再把结果和第5个元素计算:f(16, 9),结果为25;
    5    由于没有更多的元素了,计算结束,返回结果25。
    """
    # ===========匿名函数写法:===========
    # 2、两数相加,lambda 写法
    reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
    # 结果:
    15

    # 当然求和运算可以直接用Python内建函数sum(),没必要动用reduce。
        
    # 3、但是如果要把序列 [1, 3, 5, 7, 9] 变换成整数 13579,reduce就可以派上用场:
    from functools import reduce

    def fn(x, y):
        return x * 10 + y

    reduce(fn, [1, 3, 5, 7, 9])
    # 结果:
    13579

    3、sorted() 函数(常用)

    描述:
    sorted() 函数对所有可迭代的对象进行排序操作。

    注意:sort 与 sorted 区别:
    sort 是 list 的一个方法,而 sorted 可以对所有可迭代的对象进行排序操作。
    list 的 sort 方法返回的是对已经存在的列表进行操作,无返回值,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。

    PY2语法:
    sorted(iterable[, cmp[, key[, reverse]]])
    PY3语法:
    sorted(iterable, key=None, reverse=False)

    参数说明:
    iterable  —-> 可迭代对象。
    cmp       —-> 比较的函数,这个具有两个参数,参数的值都是从可迭代对象中取出,此函数必须遵守的规则为,大于则返回1,小于则返回-1,等于则返回0。(注意:Python3中已去掉cmp关键字由key代替。)
    key        —-> 主要是用来进行比较的元素,只有一个参数,具体的函数的参数就是取自于可迭代对象中,指定可迭代对象中的一个元素来进行排序。
    reverse  —-> 排序规则,reverse = True 降序 , reverse = False 升序(默认)。
    返回值:
    返回重新排序的列表。

    栗子:

    # ===========一般用法:===========
    # 1、简单排序
    a = [5,7,6,3,4,1,2]
    b = sorted(a)       # 使用sorted,保留原列表,不改变列表a的值
    print(a)
    [5, 7, 6, 3, 4, 1, 2]
    print(b)
    [1, 2, 3, 4, 5, 6, 7]

    # ===========匿名函数用法:===========
    L=[('b',2),('a',1),('c',3),('d',4)]

    # 2、利用参数 cmp 排序
    sorted(L, cmp=lambda x,y:cmp(x[1],y[1]))
    # 结果:
    [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

    # 3、利用参数 key 排序
    sorted(L, key=lambda x:x[1])
    # 结果:
    [('a', 1), ('b', 2), ('c', 3), ('d', 4)]

    # 4、按年龄升序
    students = [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
    sorted(students, key=lambda s: s[2])
    # 结果:
    [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

    # 5、按年龄降序
    sorted(students, key=lambda s: s[2], reverse=True)
    # 结果:
    [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

    4、filter() 函数

    描述:
    filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。

    该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。
    语法:

    filter(function, iterable)

    参数:
    function —-> 判断函数。
    iterable  —-> 可迭代对象。
    返回值:
    Pyhton2.7 返回列表,Python3.x 返回迭代器对象,具体内容可以查看:Python3 filter() 函数

    栗子:

    # ===========一般用法:===========
    # 1、过滤出列表中的所有奇数
    def is_odd(n):
        return n % 2 == 1
             
    newlist = filter(is_odd, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
    print(list(newlist))
    # 结果: [1, 3, 5, 7, 9]

    # ===========匿名函数用法:===========
    # 2、将列表[1, 2, 3]中能够被3整除的元素过滤出来
    newlist = filter(lambda x: x % 3 == 0, [1, 2, 3])
    print(list(newlist))
    # 结果: [3]

    作者:技术探索者

    物联沃分享整理
    物联沃-IOTWORD物联网 » Python:lambda 函数详解 以及使用

    发表回复