ModelNet40/ModelNet10 数据集预处理
ModelNet数据集是点云处理领域常用的数据集,今天简单分享下预处理ModelNet的方法。
数据集链接:ModelNet40
解压后,数据集内部结构大概就是10&40个分类,内部分为train和test:
打开文件夹能看到,里面的数据格式为off文件。这里我们要转换为txt格式进行下一步处理。
处理代码如下:
import os
import numpy
from tqdm import tqdm
import open3d as o3d
# 文件夹路径
source_path = ''
target_path = ''
# 获取off文件中的xyz数据
def read_off_file(off_file):
mesh = o3d.io.read_triangle_mesh(off_file)
# 将OFF文件转换为点云
point_cloud = numpy.asarray(mesh.vertices)
return point_cloud
def make_directory(path):
if not os.path.exists(path):
os.makedirs(path)
return
def get_file_name(file_path):
filename = file_path.split('/')[-1]
# print(filename) chair_001.off
(name, suffix) = filename.split('.')
# print(name, suffix) chair_001 off
return name
def traversal_directory(path):
dirs = []
files = []
for item in os.scandir(path):
if item.is_dir():
dirs.append(item.path)
elif item.is_file():
files.append(item.path)
return dirs, files
def run():
class_dirs, _ = traversal_directory(source_path)
for item in class_dirs:
#bathtub, bed, chair, desk, dresser
dir_name = item.split('/')[-1]
# print(dir_name)
src_train_path = source_path +'/'+dir_name + '/' + 'train'
src_test_path = source_path +'/'+dir_name + '/' + 'test'
trg_train_path = target_path +'/'+dir_name + '/' + 'train'
trg_test_path = target_path +'/'+dir_name + '/' + 'test'
make_directory(trg_test_path)
make_directory(trg_train_path)
_, train_files = traversal_directory(src_train_path)
_, test_files = traversal_directory(src_test_path)
for file in train_files:
name = get_file_name(file)
pc = read_off_file(file)
save_path = trg_train_path + '/' + name + '.txt'
numpy.savetxt(save_path, pc, delimiter=',')
print(save_path)
for file in test_files:
name = get_file_name(file)
pc = read_off_file(file)
save_path = trg_test_path + '/' + name + '.txt'
numpy.savetxt(save_path, pc, fmt="%.6f", delimiter=',')
print(save_path)
if __name__ == "__main__":
run()
把source_path和target_path换成自己的路径即可。
作者:ミッタン