【Python】数据可视化之核密度

KDEPlot(Kernel Density Estimate Plot,核密度估计图)是seaborn库中一个用于数据可视化的函数,它基于核密度估计(KDE)这一非参数统计方法来估计数据的概率密度函数。KDEPlot能够直观地展示数据的分布特征,对于单变量和双变量数据均适用。

 

目录

基本思想

主要参数

沿轴绘制

平滑调整

多类绘制 

堆叠分布

二元分布


基本思想

核密度估计(Kernel Density Estimation, KDE)是一种用于估计随机变量概率密度函数的非参数方法。在统计学和概率论中,当我们不知道数据背后的确切分布形式时,核密度估计提供了一种灵活的方式来估计数据的分布形态。这种方法特别适用于小样本数据和复杂分布的情况。

核密度估计的基本思想是将每一个数据点看作是一个小型的、平滑的“核”函数(通常是正态分布、均匀分布或其他形式的对称、平滑函数)的中心,然后计算这些核函数在整个数据空间上的叠加结果。这个叠加的结果就是整个数据集的密度估计。

主要参数

  • data:要绘制的数据集,可以是一维数组(单变量)或二维数组/DataFrame(双变量)。
  • shade:是否在核密度曲线下绘制阴影,默认为True。阴影可以帮助更直观地展示数据的分布范围。
  • color:曲线的颜色,默认为绿色('g')。
  • hue :语义映射以确定绘图元素颜色的语义变量。
  • linewidth:曲线的宽度,默认为1。
  • bw(bandwidth):核密度估计的带宽,控制曲线的平滑程度。默认为'scott',即使用Scott的规则自动计算带宽。
  • bw_adjust : 平滑程度缩放的因子。增加将使曲线更平滑。
  • gridsize:用于计算核密度的网格大小,默认为100。增加此值可以提高图形的分辨率,但也会增加计算时间。
  • cumulative:是否绘制累积密度函数(CDF),默认为False。如果设置为True,则绘制的是数据的累积分布函数而非概率密度函数。
  • vertical:在单变量输入时有效,用于控制是否颠倒x-y轴位置,默认为False。
  • kernel:核密度估计的方法,默认为'gau'(高斯核)。特别地,在二维变量的情况下仅支持高斯核方法。
  • cmap:在绘制二维KDE图时使用的颜色映射(colormap),用于控制核密度区域的递进色彩方案。
  • 沿轴绘制

    沿x轴绘制单变量分布

    tips = sns.load_dataset("tips")
    sns.kdeplot(data=tips, x="total_bill", shade=True, color="g")

    沿y轴绘制单变量分布

    sns.kdeplot(data=tips, y="total_bill", shade=True, color="g")

    平滑调整

    使用更少的平滑

    sns.kdeplot(data=tips, x="total_bill", bw_adjust=.1, shade=True, color="b")

    使用更多的平滑(不绕过极端值)

    ax= sns.kdeplot(data=tips, x="total_bill", bw_adjust=5, cut=0, shade=True, color="b")

     

     

    多类绘制 

    绘制多类或多列数据 

    iris = sns.load_dataset("iris")
    sns.kdeplot(data=iris, shade=True)

    使用不同的调色 

    iris = sns.load_dataset("iris")
    sns.kdeplot(data=iris, shade=True, palette="crest")

     

    堆叠分布

    堆叠条件分布multiple="stack"

    sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="stack", palette="PRGn")

     

    按照填充堆叠multiple="fill"

    sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="fill",palette="PRGn")

     

    二元分布

    绘制x,y的二元分布图

    sns.kdeplot(data=geyser, x="waiting", y="duration")

    使用 hue 语义映射以显示条件分布

    geyser = sns.load_dataset("geyser")
    sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind")

    填空含语义映射的条件分布曲线 

    geyser = sns.load_dataset("geyser")
    sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind", shade=True, shade_lowest=False, cmap="crest")

     

    作者:F_D_Z

    物联沃分享整理
    物联沃-IOTWORD物联网 » 【Python】数据可视化之核密度

    发表回复