基于江科大STM32的桌宠小狗
基于STM32C8T6的桌宠小狗
接线图
PWM部分
PWM.c
#include "stm32f10x.h" // Device header
void PWM_Init(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;//GPIO初始化
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//复用推挽(控制权给片上外设)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
TIM_InternalClockConfig(TIM2);//定时器2初始化
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInitStructure.TIM_Period = 2000-1; //ARR
TIM_TimeBaseInitStructure.TIM_Prescaler = 720-1; //PSC
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure);
TIM_OCInitTypeDef TIM_OCInitTypeDefStructure1;
TIM_OCStructInit(&TIM_OCInitTypeDefStructure1);
TIM_OCInitTypeDefStructure1.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitTypeDefStructure1.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitTypeDefStructure1.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitTypeDefStructure1.TIM_Pulse = 0; //CCR值
TIM_OC1Init(TIM2,&TIM_OCInitTypeDefStructure1);
TIM_OCInitTypeDef TIM_OCInitTypeDefStructure2;
TIM_OCStructInit(&TIM_OCInitTypeDefStructure2);
TIM_OCInitTypeDefStructure2.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitTypeDefStructure2.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitTypeDefStructure2.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitTypeDefStructure2.TIM_Pulse = 0;
TIM_OC2Init(TIM2,&TIM_OCInitTypeDefStructure2);
TIM_OCInitTypeDef TIM_OCInitTypeDefStructure3;
TIM_OCStructInit(&TIM_OCInitTypeDefStructure3);
TIM_OCInitTypeDefStructure3.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitTypeDefStructure3.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitTypeDefStructure3.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitTypeDefStructure3.TIM_Pulse = 0;
TIM_OC3Init(TIM2,&TIM_OCInitTypeDefStructure3);
TIM_OCInitTypeDef TIM_OCInitTypeDefStructure4;
TIM_OCStructInit(&TIM_OCInitTypeDefStructure4);
TIM_OCInitTypeDefStructure4.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitTypeDefStructure4.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitTypeDefStructure4.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitTypeDefStructure4.TIM_Pulse = 0;
TIM_OC4Init(TIM2,&TIM_OCInitTypeDefStructure4);
TIM_Cmd(TIM2,ENABLE); //开启定时器
}
void PWM_SetCompare1(uint16_t Compare)
{
TIM_SetCompare1(TIM2, Compare); //设置CCR1的值
}
void PWM_SetCompare2(uint16_t Compare)
{
TIM_SetCompare2(TIM2, Compare); //设置CCR2的值
}
void PWM_SetCompare3(uint16_t Compare)
{
TIM_SetCompare3(TIM2, Compare); //设置CCR3的值
}
void PWM_SetCompare4(uint16_t Compare)
{
TIM_SetCompare4(TIM2, Compare); //设置CCR4的值
}
可以参考江科大的:PWM驱动舵机
舵机角度的封装
void Servo_SetAngle1(float Angle)
{
PWM_SetCompare1(Angle / 180 * 2000 + 500);
}
void Servo_SetAngle2(float Angle)
{
PWM_SetCompare2(Angle / 180 * 2000 + 500);
}
void Servo_SetAngle3(float Angle)
{
PWM_SetCompare3(Angle / 180 * 2000 + 500);
}
void Servo_SetAngle4(float Angle)
{
PWM_SetCompare4(Angle / 180 * 2000 + 500);
}
写舵机运动状态
具体的步态可以观看【步态详解】人人都可制作的WiFi遥控迷你四足机器人
可以根据他的步态来进行运动,下面是我按照我自己的连线以及代码来实现的状态
前进
void servo_advance(void)//前进
{
static uint8_t advanceFlag = 1;
if (advanceFlag == 1)
{
Servo_SetAngle1(135);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(45);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 2)
{
Servo_SetAngle1(135);
Servo_SetAngle2(45);
Servo_SetAngle3(135);
Servo_SetAngle4(45);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 3)
{
Servo_SetAngle1(90);
Servo_SetAngle2(45);
Servo_SetAngle3(135);
Servo_SetAngle4(90);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 4)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 5)
{
Servo_SetAngle1(90);
Servo_SetAngle2(135);
Servo_SetAngle3(45);
Servo_SetAngle4(90);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 6)
{
Servo_SetAngle1(45);
Servo_SetAngle2(135);
Servo_SetAngle3(45);
Servo_SetAngle4(135);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 7)
{
Servo_SetAngle1(45);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(135);
Delay_ms(speed);
advanceFlag++;
}
else if(advanceFlag == 8)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
advanceFlag = 1;
}
}
后退
void servo_retreat(void)//后退
{
static uint8_t retreatFlag = 1;
if (retreatFlag == 1)
{
Servo_SetAngle1(45);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(135);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 2)
{
Servo_SetAngle1(45);
Servo_SetAngle2(135);
Servo_SetAngle3(45);
Servo_SetAngle4(135);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 3)
{
Servo_SetAngle1(90);
Servo_SetAngle2(135);
Servo_SetAngle3(45);
Servo_SetAngle4(90);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 4)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 5)
{
Servo_SetAngle1(90);
Servo_SetAngle2(45);
Servo_SetAngle3(135);
Servo_SetAngle4(90);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 6)
{
Servo_SetAngle1(135);
Servo_SetAngle2(45);
Servo_SetAngle3(135);
Servo_SetAngle4(45);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 7)
{
Servo_SetAngle1(135);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(45);
Delay_ms(speed);
retreatFlag++;
}
else if(retreatFlag == 8)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
retreatFlag = 1;
}
}
右转
void servo_trunright(void)//右转
{
static uint8_t trunrightFlag = 1;
if (trunrightFlag == 1)
{
Servo_SetAngle1(45);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(45);
Delay_ms(speed);
trunrightFlag++;
}
else if(trunrightFlag == 2)
{
Servo_SetAngle1(45);
Servo_SetAngle2(135);
Servo_SetAngle3(135);
Servo_SetAngle4(45);
Delay_ms(speed);
trunrightFlag++;
}
else if(trunrightFlag == 3)
{
Servo_SetAngle1(90);
Servo_SetAngle2(135);
Servo_SetAngle3(135);
Servo_SetAngle4(90);
Delay_ms(speed);
trunrightFlag++;
}
else if(trunrightFlag == 4)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
trunrightFlag++;
trunrightFlag = 1;
}
}
左转
void servo_trunleft(void)//左转
{
static uint8_t trunleftFlag = 1;
if (trunleftFlag == 1)
{
Servo_SetAngle1(90);
Servo_SetAngle2(135);
Servo_SetAngle3(135);
Servo_SetAngle4(90);
Delay_ms(speed);
trunleftFlag++;
}
else if(trunleftFlag == 2)
{
Servo_SetAngle1(45);
Servo_SetAngle2(135);
Servo_SetAngle3(135);
Servo_SetAngle4(45);
Delay_ms(speed);
trunleftFlag++;
}
else if(trunleftFlag == 3)
{
Servo_SetAngle1(45);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(45);
Delay_ms(speed);
trunleftFlag++;
}
else if(trunleftFlag == 4)
{
Servo_SetAngle1(90);
Servo_SetAngle2(90);
Servo_SetAngle3(90);
Servo_SetAngle4(90);
Delay_ms(speed);
trunleftFlag++;
trunleftFlag = 1;
}
}
跳舞
void servo_dance(void)//跳舞
{
static uint8_t danceFlag = 1;
if (danceFlag == 1)
{
Servo_SetAngle1(130);
Servo_SetAngle2(130);
Servo_SetAngle3(50);
Servo_SetAngle4(50);
Delay_ms(400);
danceFlag++;
}
else if(danceFlag == 2)
{
Servo_SetAngle1(50);
Servo_SetAngle2(50);
Servo_SetAngle3(130);
Servo_SetAngle4(130);
Delay_ms(400);
danceFlag = 1;
}
}
USART
#include "stm32f10x.h"
#include <stdio.h>
#include <stdarg.h>
char Serial_RxPacket[100];
uint8_t Serial_RxFlag;
void Serial_Init(void)
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
USART_InitTypeDef USART_InitStructure;
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_Init(USART1, &USART_InitStructure);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
USART_Cmd(USART1, ENABLE);
}
void Serial_SendByte(uint8_t Byte)
{
USART_SendData(USART1, Byte);
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}
void Serial_SendArray(uint8_t *Array, uint16_t Length)
{
uint16_t i;
for (i = 0; i < Length; i ++)
{
Serial_SendByte(Array[i]);
}
}
void Serial_SendString(char *String)
{
uint8_t i;
for (i = 0; String[i] != '\0'; i ++)
{
Serial_SendByte(String[i]);
}
}
uint32_t Serial_Pow(uint32_t X, uint32_t Y)
{
uint32_t Result = 1;
while (Y --)
{
Result *= X;
}
return Result;
}
void Serial_SendNumber(uint32_t Number, uint8_t Length)
{
uint8_t i;
for (i = 0; i < Length; i ++)
{
Serial_SendByte(Number / Serial_Pow(10, Length - i - 1) % 10 + '0');
}
}
int fputc(int ch, FILE *f)
{
Serial_SendByte(ch);
return ch;
}
void Serial_Printf(char *format, ...)
{
char String[100];
va_list arg;
va_start(arg, format);
vsprintf(String, format, arg);
va_end(arg);
Serial_SendString(String);
}
void USART1_IRQHandler(void)
{
static uint8_t RxState = 0;
static uint8_t pRxPacket = 0;
if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET)
{
uint8_t RxData = USART_ReceiveData(USART1);
if (RxState == 0)
{
if (RxData == '@' && Serial_RxFlag == 0)
{
RxState = 1;
pRxPacket = 0;
}
}
else if (RxState == 1)
{
if (RxData == '\r')
{
RxState = 2;
}
else
{
Serial_RxPacket[pRxPacket] = RxData;
pRxPacket ++;
}
}
else if (RxState == 2)
{
if (RxData == '\n')
{
RxState = 0;
Serial_RxPacket[pRxPacket] = '\0';
Serial_RxFlag = 1;
}
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
}
USART可以观看江科大的串口收发HEX数据包&串口收发文本数据包
(建议从9-3开始观看,有利于了解USART代码的各部分含义)
main.c
#include "stm32f10x.h"
#include "delay.h"
#include "Servo.h"
#include "PWM.h"
#include "control.h"
#include "UART.h"
#include <string.h>
float Angle;
uint8_t statu_falg=0;
int main (void)
{
Servo_Init();
Serial_Init();
servo_up();
// servo_down();
while(1)
{
if(Serial_RxFlag == 1)
{
if (strcmp(Serial_RxPacket, "advance") == 0)
{
statu_falg=1;
}
if (strcmp(Serial_RxPacket,"fast") == 0)
{
statu_falg=2;
}
if (strcmp(Serial_RxPacket, "ret") == 0)
{
statu_falg=3;
}
if (strcmp(Serial_RxPacket, "right") == 0)
{
statu_falg=4;
}
if (strcmp(Serial_RxPacket, "left") == 0)
{
statu_falg=5;
}
if (strcmp(Serial_RxPacket, "down") == 0)
{
statu_falg=6;
}
if (strcmp(Serial_RxPacket, "up") == 0)
{
statu_falg=7;
}
if (strcmp(Serial_RxPacket, "hard") == 0)
{
statu_falg=8;
}
if (strcmp(Serial_RxPacket, "dance") == 0)
{
statu_falg=9;
}
if (strcmp(Serial_RxPacket, "sit") == 0)
{
statu_falg=10;
}
if (strcmp(Serial_RxPacket, "sithard") == 0)
{
statu_falg=11;
}
Serial_RxFlag = 0;
}
switch(statu_falg)
{
case 1: servo_advance();break;
case 2: servo_fastadvance();break;
case 3: servo_retreat();break;
case 4: servo_trunright();break;
case 5: servo_trunleft();break;
case 6: servo_down();break;
case 7: servo_up();break;
case 8: servo_hard();break;
case 9: servo_dance();break;
case 10: servo_sitdown();break;
case 11: servo_sithard();break;
}
}
}
在开始我写代码的时候,没有配置单独的关于小狗行动的标志位,直接运行行为,导致蓝牙控制下的小狗不能在指令下连续运动,经过高人指点,定义一个标志位,将持续运动的用标志位取代,用switch函数查询标志位,执行程序。(我犯了同志们就能避开了)
连接蓝牙
我使用的蓝牙是JDY-3x,蓝牙APP是B站上一位up的开源【蓝牙调试器App开源】,使用什么蓝牙APP无所谓。
连接线路如下:
RX—–P9;
TX—–P10;
GND—GND;
VCC—-3.3V;
手机蓝牙app:
配置好后就可以试试能不能用蓝牙控制小狗了。我的小狗属于有线款,不能脱离面包板,条件允许,同志们可以购买这份材料清单,来源于B站up:这个橙子好辣【【教程】如何做一个可爱的桌面机器小猫小狗】
材料清单
到这个地方,一个桌面宠物就算做好了。。。如果可以也能加入智能语音控制模块,对宠物进行语音控制,我尚在摸索当中,感谢。
作者:热爱学习的小c