【深度学习入门:基于Python的理论与实现图书电子版及各章代码】解决手写数字识别MNIST数据集无法访问问题
仓库:
deep_learning_from_scratch_python
仓库中有各章代码和电子版图书。
问题描述:
在学习《深度学习入门:基于Python的理论与实现》高清中文版时,参考了GitHub代码:https://github.com/ZhangXinNan/deep_learning_from_scratch的代码。
但代码需要访问数据集 MNIST handwritten digit database,而这个官方的数据集无法直接访问,提示以下错误,所以运行代码也会出现问题。
解决方法:
找到了 备份数据集:mnist数据集,从中下载了四个文件:
将四个文件放在了https://github.com/ZhangXinNan/deep_learning_from_scratch的dataset/下。
现在有了离线的数据集文件,但是https://github.com/ZhangXinNan/deep_learning_from_scratch/dataset/mnist.py文件中是在线的下载方案,mnist.py的代码如下:
# coding: utf-8
try:
import urllib.request
except ImportError:
raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img':'train-images-idx3-ubyte.gz',
'train_label':'train-labels-idx1-ubyte.gz',
'test_img':'t10k-images-idx3-ubyte.gz',
'test_label':'t10k-labels-idx1-ubyte.gz'
}
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"
train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
def download_mnist():
for v in key_file.values():
_download(v)
def _load_label(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])
return dataset
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
def _change_one_hot_label(X):
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
"""读入MNIST数据集
Parameters
----------
normalize : 将图像的像素值正规化为0.0~1.0
one_hot_label :
one_hot_label为True的情况下,标签作为one-hot数组返回
one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
flatten : 是否将图像展开为一维数组
Returns
-------
(训练图像, 训练标签), (测试图像, 测试标签)
"""
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
if __name__ == '__main__':
init_mnist()
修改mnist.py中的代码:
# coding: utf-8
import os.path
import gzip
import pickle
import os
import numpy as np
# Specify your local dataset directory
#dataset_dir = 'D:\\Workspace\\LearningDeepLearning\\deep_learning_from_scratch\\dataset'
dataset_dir = './dataset'
save_file = os.path.join(dataset_dir, "mnist.pkl")
key_file = {
'train_img': 'train-images-idx3-ubyte.gz',
'train_label': 'train-labels-idx1-ubyte.gz',
'test_img': 't10k-images-idx3-ubyte.gz',
'test_label': 't10k-labels-idx1-ubyte.gz'
}
img_size = 784 # Image size is 28x28
def _load_label(file_name):
"""Load label data from local file"""
file_path = os.path.join(dataset_dir, file_name)
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
def _load_img(file_name):
"""Load image data from local file"""
file_path = os.path.join(dataset_dir, file_name)
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
def _convert_numpy():
"""Convert data to NumPy arrays and package them"""
dataset = {
'train_img': _load_img(key_file['train_img']),
'train_label': _load_label(key_file['train_label']),
'test_img': _load_img(key_file['test_img']),
'test_label': _load_label(key_file['test_label'])
}
return dataset
def _change_one_hot_label(X):
"""Convert labels to one-hot encoding"""
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
"""Load and preprocess the MNIST dataset"""
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
def init_mnist():
"""Initialize the MNIST dataset from local files"""
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
if __name__ == '__main__':
init_mnist()
为了测试修改后的代码能否对mnist数据集进行正确的处理,运行dataset/mnist.py
PS D:\Workspace\LearningDeepLearning\deep_learning_from_scratch\dataset> python .\mnist.py
Converting train-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting train-labels-idx1-ubyte.gz to NumPy Array ...
Done
Converting t10k-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting t10k-labels-idx1-ubyte.gz to NumPy Array ...
Done
Creating pickle file ...
Done!
运行成功!
为了进一步验证,运行其他代码中需要访问dataset并调用dataset/mnist.py中函数的程序,例如,运行ch03/mnist_show.py
PS D:\Workspace\LearningDeepLearning\deep_learning_from_scratch\ch03> python .\mnist_show.py
5
(784,)
(28, 28)
运行成功!并显示了MNIST数据集第一张照片:
Reference:
books/ai/《深度学习入门:基于Python的理论与实现》高清中文版.pdf at master · chapin666/books · GitHub
GitHub – ZhangXinNan/deep_learning_from_scratch: 《深度学习入门——基于Python的理论与实现》作者:斋藤康毅 译者:陆宇杰
MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
GitHub – cvdfoundation/mnist: The MNIST database of handwritten digits is one of the most popular image recognition datasets. It contains 60k examples for training and 10k examples for testing.
作者:RL^2