分享四种常用的水下图像增强算法
一、直方图均衡化(Histogram Equalization,HE):HE是一种用于增强图像对比度的经典技术。它通过重新分配图像像素的灰度级别,使得图像中的灰度值更加均匀分布,从而增强图像的整体对比度。
二、对比度有限自适应直方图均衡化(Contrast Limited Adaptive Histogram Equalization,CLAHE):CLAHE是HE的改进版本,它在局部区域内应用直方图均衡化,以避免在图像中产生过度增强的噪声。
三、去雾算法(Dehazing,Dehaze):水下图像常常受到水中悬浮颗粒的散射和吸收影响,导致图像中出现雾霾效果。去雾算法旨在通过估计和消除雾霾引起的图像退化,从而提高水下图像的清晰度和对比度。
四、多尺度反射消除算法(Multi-Scale Retinex with Color Restoration,MSRCR):MSRCR算法基于多尺度的Retinex理论,通过估计图像的光照分量和反射分量来减少图像的光照不均匀性,从而改善图像的质量和视觉效果。
下图为浑浊度为10NTU左右水体30cm左右的成像
其中单张图像1080P实时性测试中:
HE: 5.95ms
CLAHE: 2.99S
DEHAZE: 83.77ms
MSRCR: 2165.24ms
import cv2
import os
import numpy as np
import time
from tqdm import tqdm
"""HE方法"""
def he(image):
B, G, R = cv2.split(image)
B = cv2.equalizeHist(B)
G = cv2.equalizeHist(G)
R = cv2.equalizeHist(R)
result = cv2.merge((B, G, R))
return result
"""CLAHE方法"""
def clahe(image, clipLimit=2.0, tileGridSize=(8, 8)):
B, G, R = cv2.split(image)
clahe = cv2.createCLAHE(clipLimit, tileGridSize)
clahe_B = clahe.apply(B)
clahe_G = clahe.apply(G)
clahe_R = clahe.apply(R)
result = cv2.merge((clahe_B, clahe_G, clahe_R))
return result
"""去雾方法"""
def zmMinFilterGray(src, r=7):
return cv2.erode(src, np.ones((2 * r + 1, 2 * r + 1)))
def guidedfilter(I, p, r, eps):
height, width = I.shape
m_I = cv2.boxFilter(I, -1, (r, r))
m_p = cv2.boxFilter(p, -1, (r, r))
m_Ip = cv2.boxFilter(I * p, -1, (r, r))
cov_Ip = m_Ip - m_I * m_p
m_II = cv2.boxFilter(I * I, -1, (r, r))
var_I = m_II - m_I * m_I
a = cov_Ip / (var_I + eps)
b = m_p - a * m_I
m_a = cv2.boxFilter(a, -1, (r, r))
m_b = cv2.boxFilter(b, -1, (r, r))
return m_a * I + m_b
def getV1(m, r, eps, w, maxV1): # 输入rgb图像,值范围[0,1]
'''计算大气遮罩图像V1和光照值A, V1 = 1-t/A'''
V1 = np.min(m, 2) # 得到暗通道图像
V1 = guidedfilter(V1, zmMinFilterGray(V1, 7), r, eps) # 使用引导滤波优化
bins = 2000
ht = np.histogram(V1, bins) # 计算大气光照A
d = np.cumsum(ht[0]) / float(V1.size)
for lmax in range(bins - 1, 0, -1):
if d[lmax] <= 0.999:
break
A = np.mean(m, 2)[V1 >= ht[1][lmax]].max()
V1 = np.minimum(V1 * w, maxV1) # 对值范围进行限制
return V1, A
def defog(m, r=81, eps=0.001, w=0.95, maxV1=0.80, bGamma=False):
m = m / 255.0
Y = np.zeros(m.shape)
V1, A = getV1(m, r, eps, w, maxV1) # 得到遮罩图像和大气光照
for k in range(3):
Y[:, :, k] = (m[:, :, k] - V1) / (1 - V1 / A) # 颜色校正
Y = np.clip(Y, 0, 1)
if bGamma:
Y = Y ** (np.log(0.5) / np.log(Y.mean())) # gamma校正,默认不进行该操作
return Y * 255
"""MSRCR方法"""
def singleScaleRetinex(img, sigma):
retinex = np.log10(img) - np.log10(cv2.GaussianBlur(img, (0, 0), sigma))
return retinex
def multiScaleRetinex(img, sigma_list):
retinex = np.zeros_like(img)
for sigma in sigma_list:
retinex += singleScaleRetinex(img, sigma)
retinex = retinex / len(sigma_list)
return retinex
def colorRestoration(img, alpha, beta):
img_sum = np.sum(img, axis=2, keepdims=True)
color_restoration = beta * (np.log10(alpha * img) - np.log10(img_sum))
return color_restoration
def simplestColorBalance(img, low_clip, high_clip):
total = img.shape[0] * img.shape[1]
for i in range(img.shape[2]):
unique, counts = np.unique(img[:, :, i], return_counts=True)
current = 0
for u, c in zip(unique, counts):
if float(current) / total < low_clip:
low_val = u
if float(current) / total < high_clip:
high_val = u
current += c
img[:, :, i] = np.maximum(np.minimum(img[:, :, i], high_val), low_val)
return img
def MSRCR(img, sigma_list=[15, 80, 200], G=5.0, b=25.0, alpha=125.0, beta=46.0, low_clip=0.01, high_clip=0.99):
img = np.float64(img) + 1.0
img_retinex = multiScaleRetinex(img, sigma_list)
img_color = colorRestoration(img, alpha, beta)
img_msrcr = G * (img_retinex * img_color + b)
for i in range(img_msrcr.shape[2]):
img_msrcr[:, :, i] = (img_msrcr[:, :, i] - np.min(img_msrcr[:, :, i])) / \
(np.max(img_msrcr[:, :, i]) - np.min(img_msrcr[:, :, i])) * \
255
img_msrcr = np.uint8(np.minimum(np.maximum(img_msrcr, 0), 255))
img_msrcr = simplestColorBalance(img_msrcr, low_clip, high_clip)
return img_msrcr
def process_image(image_path, output_folder):
image = cv2.imread(image_path)
he_image = he(image)
clahe_image = clahe(image)
defog_image = defog(image)
msrcr_image = MSRCR(image)
filename = os.path.splitext(os.path.basename(image_path))[0]
cv2.imwrite(os.path.join(output_folder["he"], filename + ".jpg"), he_image)
cv2.imwrite(os.path.join(output_folder["clahe"], filename + ".jpg"), clahe_image)
cv2.imwrite(os.path.join(output_folder["defog"], filename + ".jpg"), defog_image)
cv2.imwrite(os.path.join(output_folder["msrcr"], filename + ".jpg"), msrcr_image)
def batch_process_images(input_folder, output_folder):
# 确保输出文件夹存在
for folder in output_folder.values():
if not os.path.exists(folder):
os.makedirs(folder)
image_files = [f for f in os.listdir(input_folder) if os.path.isfile(os.path.join(input_folder, f))]
# 显示进度条
for image_file in tqdm(image_files, desc="Processing Images"):
image_path = os.path.join(input_folder, image_file)
process_image(image_path, output_folder)
input_folder = r"C:\YOLO_Project\Convert\IMG_ENHANCEMENT-4\ImgEnhancement-4type\img"
output_folder = {
"he": "he",
"clahe": "clahe",
"defog": "defog",
"msrcr": "msrcr"
}
batch_process_images(input_folder, output_folder)
input_folder处输入相处理的图像文件夹路径
在图像路径img处新建四个生成文件夹路径,具体放置方法可以如下
作者:skywalkerxhx