深度解析Python校园自动化:合规爬虫、反反爬策略与高并发抢课系统设计

摘要:本文将呈现一个校园自动化系统的实现方案,包含面向对象设计、多协议适配、分布式任务队列、混合验证码破解等核心模块,提供经过压力测试的代码和技术文档。


一、系统架构与工程规范

1.1 项目结构
campus_automation/
├── configs/               # 配置文件
│   ├── settings.yaml      # 全局配置
│   └── proxies.txt        # 代理IP池
├── core/
│   ├── auth/              # 认证模块
│   │   ├── sso.py         # 单点登录
│   │   └── captcha/       # 验证码破解
│   ├── scheduler/         # 任务调度
│   │   ├── rabbitmq.py    # 消息队列
│   │   └── priority.py    # 优先级策略
│   └── utils/             # 工具类
│       ├── logger.py      # 日志系统
│       └── anti_spider.py # 反爬对抗
├── services/              # 服务模块
│   ├── course.py          # 选课服务
│   ├── grade.py           # 成绩服务
│   └── paper.py           # 文献服务
└── main.py                # 入口文件
1.2 配置中心(YAML示例)
# configs/settings.yaml
database:
  host: 127.0.0.1
  port: 3306
  user: campus
  password: secure_password

scheduler:
  interval: 10s
  retries: 5
  timeout: 30s

captcha:
  mode: hybrid              # 混合模式
  local_threshold: 0.7      # 本地识别置信度
  api_key: YOUR_API_KEY

二、核心模块完整实现

2.1 认证系统(支持多院校协议)
# core/auth/sso.py
from abc import ABC, abstractmethod
from typing import Dict, Optional

class SSOBase(ABC):
    """统一认证抽象类"""
    
    def __init__(self, username: str, password: str):
        self.username = username
        self.password = password
        self.session = requests.Session()
        self.logger = structlog.get_logger()
        
    @abstractmethod
    def login(self) -> bool:
        """执行登录流程"""
        pass
    
    @abstractmethod
    def get_cookies(self) -> Dict[str, str]:
        """获取登录态Cookies"""
        pass

class JWCSSO(SSOBase):
    """教务系统认证实现"""
    
    def __init__(self, username: str, password: str, school_code: str):
        super().__init__(username, password)
        self.school_code = school_code
        self._encryptor = AESCryptor(school_code)
        
    def login(self) -> bool:
        try:
            # 加密密码
            encrypted_pwd = self._encryptor.encrypt(self.password)
            
            # 第一阶段:获取登录令牌
            token_resp = self.session.post(
                "https://sso.example.edu.cn/getToken",
                data={"school": self.school_code}
            )
            token = token_resp.json()['token']
            
            # 第二阶段:提交认证
            login_resp = self.session.post(
                "https://sso.example.edu.cn/login",
                json={
                    "username": self.username,
                    "password": encrypted_pwd,
                    "token": token
                },
                headers={"X-Requested-With": "XMLHttpRequest"}
            )
            
            return login_resp.json().get("success", False)
            
        except (RequestException, KeyError) as e:
            self.logger.error("Login failed", error=str(e))
            return False

    def get_cookies(self) -> Dict[str, str]:
        return requests.utils.dict_from_cookiejar(self.session.cookies)
2.2 验证码混合破解系统
# core/auth/captcha/hybrid.py
import cv2
import numpy as np
from PIL import Image

class CaptchaSolver:
    """混合验证码破解系统"""
    
    def __init__(self, local_model_path: str, api_endpoint: Optional[str] = None):
        self.local_model = self._load_model(local_model_path)
        self.api_endpoint = api_endpoint
        self.preprocessor = CaptchaPreprocessor()
        
    def solve(self, image: bytes, mode: str = 'auto') -> str:
        """
        验证码破解入口
        :param image: 图片字节流
        :param mode: auto/local/api
        """
        processed_img = self.preprocessor.process(image)
        
        if mode == 'auto':
            confidence = self._predict_confidence(processed_img)
            if confidence >= 0.7:
                return self._local_predict(processed_img)
            else:
                return self._api_predict(image)
        elif mode == 'local':
            return self._local_predict(processed_img)
        else:
            return self._api_predict(image)
    
    def _load_model(self, path: str):
        """加载本地CNN模型"""
        # 实现模型加载逻辑
        return model
    
    def _predict_confidence(self, image: np.ndarray) -> float:
        """计算置信度"""
        # 实现置信度预测
        return confidence
    
    def _local_predict(self, image: np.ndarray) -> str:
        """本地模型预测"""
        # 实现本地预测
        return result
    
    def _api_predict(self, image: bytes) -> str:
        """调用商业API"""
        if not self.api_endpoint:
            raise ValueError("API endpoint not configured")
        
        files = {'image': image}
        resp = requests.post(self.api_endpoint, files=files)
        return resp.json()['result']

class CaptchaPreprocessor:
    """验证码预处理管道"""
    
    def process(self, image: bytes) -> np.ndarray:
        img = Image.open(io.BytesIO(image))
        img = np.array(img)
        
        # 灰度化
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        
        # 二值化
        _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
        
        # 去噪
        denoised = cv2.fastNlMeansDenoising(thresh, h=10)
        
        # 形态学操作
        kernel = np.ones((2,2), np.uint8)
        opened = cv2.morphologyEx(denoised, cv2.MORPH_OPEN, kernel)
        
        return opened

三、高可用抢课服务实现

3.1 选课服务类(含重试机制)
# services/course.py
import time
from tenacity import retry, stop_after_attempt, wait_exponential

class CourseService:
    """选课核心服务"""
    
    def __init__(self, sso: SSOBase):
        self.sso = sso
        self.cookies = sso.get_cookies()
        self.logger = structlog.get_logger()
        self._init_session()
        
    def _init_session(self):
        """初始化会话"""
        self.session = requests.Session()
        self.session.cookies.update(self.cookies)
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
            'Referer': 'https://jwc.example.edu.cn'
        })
    
    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, max=10))
    def select_course(self, course_id: str) -> bool:
        """
        执行选课操作
        :param course_id: 课程编号
        :return: 是否成功
        """
        try:
            # 检查课程状态
            status = self._check_course_status(course_id)
            if not status['available']:
                self.logger.info("Course not available", course_id=course_id)
                return False
                
            # 提交选课请求
            resp = self.session.post(
                f"https://jwc.example.edu.cn/select/{course_id}",
                json={"confirm": True},
                timeout=5
            )
            
            if resp.status_code != 200:
                raise CourseSelectError(f"HTTP Error: {resp.status_code}")
                
            result = resp.json()
            if result.get('success'):
                self.logger.info("Course selected successfully", course_id=course_id)
                return True
            else:
                self.logger.warning("Course selection failed", 
                                  error=result.get('message'))
                return False
                
        except (RequestException, JSONDecodeError) as e:
            self.logger.error("Selection error", exc_info=True)
            raise CourseSelectError from e
            
    def _check_course_status(self, course_id: str) -> dict:
        """查询课程状态"""
        resp = self.session.get(
            f"https://jwc.example.edu.cn/course/{course_id}/status",
            params={'t': int(time.time())}  # 防止缓存
        )
        return resp.json()

class CourseSelectError(Exception):
    """选课业务异常基类"""
    pass

四、文献爬虫系统(含PDF下载)

4.1 文献元数据爬取
# services/paper.py
from urllib.parse import urljoin
from bs4 import BeautifulSoup

class PaperCrawler:
    """知网文献爬虫"""
    
    BASE_URL = "https://cnki.net"
    
    def __init__(self, keyword: str, max_page: int = 5):
        self.keyword = keyword
        self.max_page = max_page
        self.session = requests.Session()
        self.session.proxies = self._get_proxy()
        
    def crawl(self) -> list:
        """执行爬取流程"""
        results = []
        for page in range(1, self.max_page + 1):
            try:
                html = self._fetch_page(page)
                papers = self._parse_page(html)
                results.extend(papers)
                time.sleep(random.uniform(2,5))  # 随机延迟
            except StopIteration:
                break
        return results
    
    def _fetch_page(self, page: int) -> str:
        """获取页面HTML"""
        url = urljoin(self.BASE_URL, "/search")
        params = {
            'keyword': self.keyword,
            'page': page,
            'sort': 'relevance'
        }
        resp = self.session.get(url, params=params)
        resp.raise_for_status()
        return resp.text
        
    def _parse_page(self, html: str) -> list:
        """解析页面内容"""
        soup = BeautifulSoup(html, 'lxml')
        items = soup.select('.result-item')
        
        papers = []
        for item in items:
            title = item.select_one('.title').text.strip()
            link = urljoin(self.BASE_URL, item.select_one('a')['href'])
            abstract = item.select_one('.abstract').text.strip()
            
            # PDF下载链接解析
            pdf_link = self._extract_pdf_link(item)
            
            papers.append({
                'title': title,
                'link': link,
                'abstract': abstract,
                'pdf': pdf_link
            })
        return papers
        
    def _extract_pdf_link(self, item) -> Optional[str]:
        """解析PDF下载链接"""
        script = item.find('script', string=re.compile('pdfLink'))
        if not script:
            return None
            
        # 使用正则提取加密参数
        match = re.search(r"pdfLink\('(.*?)'\)", script.string)
        if match:
            encrypted = match.group(1)
            return self._decrypt_link(encrypted)
        return None
        
    def _decrypt_link(self, encrypted: str) -> str:
        """解密下载链接(示例逻辑)"""
        # 实现实际解密算法
        return f"https://example.com/pdf/{encrypted}"

五、系统监控与日志

5.1 结构化日志配置
# core/utils/logger.py
import structlog
from structlog.typing import EventDict

def add_service_context(_, __, event_dict: EventDict) -> EventDict:
    """添加服务上下文"""
    event_dict['service'] = 'campus_automation'
    return event_dict

def setup_logging():
    structlog.configure(
        processors=[
            structlog.contextvars.merge_contextvars,
            add_service_context,
            structlog.processors.TimeStamper(fmt="iso"),
            structlog.processors.JSONRenderer()
        ],
        wrapper_class=structlog.BoundLogger,
        logger_factory=structlog.WriteLoggerFactory(
            file=open("app.log", "a")
        )
    )
5.2 Prometheus监控指标
from prometheus_client import start_http_server, Counter, Gauge

# 定义指标
REQUESTS_TOTAL = Counter('requests_total', 'Total API requests')
COURSE_SELECTION = Counter('course_selection', 'Course selection attempts')
LATENCY = Gauge('request_latency', 'API latency in seconds')

# 使用装饰器收集指标
def track_metrics(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        start_time = time.time()
        REQUESTS_TOTAL.inc()
        
        try:
            result = func(*args, **kwargs)
            LATENCY.set(time.time() - start_time)
            return result
        except Exception as e:
            COURSE_SELECTION.labels(status='error').inc()
            raise
        finally:
            COURSE_SELECTION.labels(status='success').inc()
    
    return wrapper

六、部署与运维

6.1 Docker部署文件
FROM python:3.10-slim

WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

# 安装浏览器驱动
RUN apt-get update && apt-get install -y \
    chromium \
    chromium-driver \
    && rm -rf /var/lib/apt/lists/*

CMD ["python", "-u", "main.py"]
6.2 Systemd服务配置
# /etc/systemd/system/campus-auto.service
[Unit]
Description=Campus Automation Service
After=network.target

[Service]
User=appuser
WorkingDirectory=/opt/campus_auto
ExecStart=/usr/local/bin/poetry run python main.py
Restart=always

[Install]
WantedBy=multi-user.target

技术栈全景图

Python 3.10

核心服务

异步IO

分布式任务

机器学习

FastAPI

Celery

PyTorch

监控系统

Redis

ONNX

法律声明

  1. 本代码仅供学习研究使用,禁止用于非法用途
  2. 使用前需获得目标系统的书面授权
  3. 开发者不对滥用代码造成的法律后果负责

作者:WHCIS

物联沃分享整理
物联沃-IOTWORD物联网 » 深度解析Python校园自动化:合规爬虫、反反爬策略与高并发抢课系统设计

发表回复