蓝桥杯嵌入式组第十三届省赛STM32G431RBT6源码解析及题目详解

文章目录

  • 1.题目解析
  • 1.1 分而治之,藕断丝连
  • 1.2 模块化思维导图
  • 1.3 模块解析
  • 1.3.1 KEY模块
  • 1.3.2 LED模块
  • 1.3.3 LCD模块
  • 1.3.4 TIM模块
  • 1.3.5 UART模块
  • 1.3.5.1 uart数据解析
  • 2.源码
  • 2.1cubemx配置
  • 3.第十三届题目
  • 前言:STM32G431RBT6实现嵌入式组第十三届题目解析+源码,本文默认读者具备基础的stm32知识。文章末尾附有第十三届题目。

    1.题目解析

    第十三届题目和第十二届题目如出一辙。更甚十到十三届题目差的不多,基本一个模板,只不过十二十三多了一个uart。蓝桥杯省赛的题目确实越来越水了😅。

    1.1 分而治之,藕断丝连

    还是那句话,将不同模块进行封装,通过变量进行模块间的合作。
    函数将模块分而治之,变量使模块间藕断丝连。

    1.2 模块化思维导图

    下图根据题目梳理。还是使用思维导图。

    1.3 模块解析

    1.3.1 KEY模块

    还是控制按一次处理一次。老朋友了我们就不多说了,题目限制了按键消抖和单次处理,所以我们要加上消抖,和前几届的处理一模一样。
    正常按键逻辑:
    开始按下—>按下—>释放;
    但是题目要求得按一次处理一次,根据代码逻辑加了一种等待释放状态
    根据机械按键的特性开始和结束都得消抖,加上按一次执行一次,所以我们的处理逻辑是:
    开始按下—>按下消抖—>按下—>等待弹起—>弹起—>弹起消抖—>释放;
    具体看源码

    if(按键按下){
    	if(是否是释放状态){					//开始按下
    		进入消抖状态,开始消抖计时
    	}
    	else if(是否是消抖状态){    			//按下消抖
    		if(当前时间-消抖计时>=消抖时长){
    			消抖完成,进入按下状态
    		}
    	}
    	else if(是否是按下状态){				//等待弹起状态
    		等待释放状态
    	}
    }
    else{//没有按下
    	if(是否是等待释放或者按下状态){		//弹起
    		进入消抖状态,开始消抖计时
    	}
    	else if(是否是消抖状态){				//弹起消抖
    		if(当前时间-消抖计时>=消抖时长){
    			消抖完成,按键释放
    		}
    	}
    }
    

    1.3.2 LED模块

    ld1:密码输入成功5s后熄灭
    ld2:输入密码错误三次,以0.1s间隔闪烁5s熄灭
    解决办法,设置一个标志位代表ld1~ld8,改变对应位的的值,再将标志位写入ODR寄存器中来控制led的亮灭。
    具体实现看源码

    1.3.3 LCD模块

    lcd显示两个界面,注意首次切换的时候得清屏。
    根据B1界面1和界面2切换;
    状态0:PSD;

    状态1:STA;

    具体实现看源码

    1.3.4 TIM模块

    TIM3产生0.1s时基。PSC:1699,ARR:9999;
    TIM2通道2产生2kHzPWM。PSC:16,ARR:4999;
    PSC和ARR计算公式(计算周期就是频率的倒数):

    //tim2pwm周期中断
    void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
    {
        if(lcd_show_conv == 0){     //输入密码界面1KHz的方波
            PWM_1KHz_flag++;
            if(PWM_1KHz_flag == 2){      //两个周期高电平
                TIM2->CCR2 = 4999;
            }else if(PWM_1KHz_flag == 4){ //两个周期低电平 
                PWM_1KHz_flag = 0;
                TIM2->CCR2 = 0;
            }
        }else{                  //密码正确输出2Khz10%占空比pwm
            if(tim_5s == 0) tim_5s = 1;
            if(tim_5s == 51) {
                lcd_show_conv = 0;
                tim_5s = 0;
            }
            TIM2->CCR2 = 499;
        }
    }
    //tim3 0.1s时基中断
    void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
    {
        if(tim_5s != 0) tim_5s++;
        if(ld2_tim_5s != 0) ld2_tim_5s++;
        led_process();
        HAL_UARTEx_ReceiveToIdle_IT(&huart1, (uint8_t*)uart_rx_data, 7);   //周期开启uart接收中断
    }
    

    1.3.5 UART模块

    十三届题目的难度就在uart的数据处理上。
    1.单片机接收来自电脑固定格式的数据,我们就需要数据限制条件来写解析接收的数据。限制条件:数据长度,数据格式。
    具体请看源码

    1.3.5.1 uart数据解析

    我们可以使用指针加for单个字符判断,也可以使用string.h库中的字符串处理函数,strcmp(), strcpy(),strncmp(), strncpy()等函数。

    //解析uart接收数据,返回值测试的时候使用,成功可以不用返回值,因为不做任何处理
    u8 analyze_uart_data()
    {
        if(strncmp(uart_rx_data, default_code, 3)) return 1;   //判断前三位和默认密码是否相等
        for(u8 i=4;i<7;i++){                                 //判断新密码格式是否正确
            if(uart_rx_data[i] < '0' || uart_rx_data[i] > '9') return 2;
        }
        if(strncpy(default_code, uart_rx_data+4, 3)) return 3;  //判断密码是否改成功
        return 0;
    }
    

    2.源码

    我所有的实现都在main.c文件中。

    2.1cubemx配置

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2025 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "tim.h"
    #include "usart.h"
    #include "gpio.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    #include "stdio.h"
    #include "lcd.h"
    #include "string.h"
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    
    /* USER CODE BEGIN PV */
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    //按键的四种状态
    enum{
        key_released = 0U,
        key_pressed,
        key_wait_released,
        key_reduction,
    };
    //按键消抖开始时间标记
    uint32_t key_redu = 0;
    /*
    keys_state: 按键状态
    keys_volt: 按键对应gpio电平状态
    */
    uint8_t keys_state[4] = {0}, keys_volt[4] = {0};
    /*
    set_code: 设置密码存储位置
    default_code: 默认密码存储位置
    lcd_str: lcd显示
    uart_rx_data: 串口接收数据
    */
    char set_code[4] = {'@','@','@'}, default_code[4] = {'1', '2', '3', '\0'}, lcd_str[21] = {0},uart_rx_data[8] = {0};
    /*
    lcd_show_conv: lcd界面切换标志
    B1_3_limit: 上电默认密码值限制
    lcd_clear_flag: lcd清屏标志
    PWM_1KHz_flag: pwm输出1KHz标志
    tim_5s: 密码正确,涉及的计时操作
    ld2_tim_5s: ld2跟上面的是独立事件,单独计时
    code_error_cnt: 错误计数
    ld_flag: led状态标记
    */
    uint8_t lcd_show_conv = 0, B1_3_limit = 0, lcd_clear_flag = 0, PWM_1KHz_flag = 0, tim_5s = 0, ld2_tim_5s = 0,
            code_error_cnt = 0, ld_flag = 0;
    
    void key_state_gain();
    void key_process();
    void lcd_process();
    void led_process();
    u8 analyze_uart_data();
    
    
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
    
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
        LCD_Init();
        LCD_Clear(Black);
        LCD_SetBackColor(Black);
        LCD_SetTextColor(White);
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_TIM2_Init();
      MX_TIM3_Init();
      MX_USART1_UART_Init();
      /* USER CODE BEGIN 2 */
        HAL_TIM_Base_Start_IT(&htim3);
        HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_2);
        HAL_UARTEx_ReceiveToIdle_IT(&huart1, (uint8_t*)uart_rx_data, 7);
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
            key_state_gain();
            key_process();
            lcd_process();
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Configure the main internal regulator output voltage
      */
      HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
      RCC_OscInitStruct.HSEState = RCC_HSE_ON;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
      RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
      RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV6;
      RCC_OscInitStruct.PLL.PLLN = 85;
      RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
      RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
      RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /* USER CODE BEGIN 4 */
    //获取按键状态
    
    void key_state_gain()
    {
        keys_volt[0] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
        keys_volt[1] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
        keys_volt[2] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
        keys_volt[3] = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
        for(uint8_t i=0;i<4;i++){
            //开始按下>>>消抖>>>按下>>>消抖>>>释放
            if(keys_volt[i] == 0)
            {
                if(keys_state[i] == key_released){     
                    keys_state[i] = key_reduction;
                    key_redu = HAL_GetTick();
                }
                else if(keys_state[i] == key_reduction){
                    if(HAL_GetTick() - key_redu>=10){
                        keys_state[i] = key_pressed;
                    }
                }
                else if(keys_state[i] == key_pressed){
                    keys_state[i] = key_wait_released;
                }
            }
            else{
                if(keys_state[i] == key_pressed || keys_state[i] == key_wait_released)
                {
                    keys_state[i] = key_reduction;
                    key_redu = HAL_GetTick();
                }
                else if(keys_state[i] == key_reduction){
                    if(HAL_GetTick() - key_redu>=10){
                        keys_state[i] = key_released;
                    }
                }
            }
        } 
    }
    //设置按键对应标志位
    void key_process()
    {
        if(lcd_show_conv == 0){
            for(uint8_t i=0;i<3;i++){
                if(keys_state[i] == key_pressed)
                {
                    B1_3_limit = 1;
                    if(set_code[i] == '@') set_code[i] = '0';
                    else{
                        set_code[i]++;
                        if(set_code[i]>'9') set_code[i] = '0';
                    }
                }
            }
        }
        if(B1_3_limit == 0){
            for(uint8_t i=0;i<3;i++){
                set_code[i] = '@';
            }
            set_code[3] = '\0';
        }
        if(keys_state[3] == key_pressed)
        {
            B1_3_limit = 0;
            if(!strcmp(set_code, default_code)){
                lcd_show_conv ^= 1;
            }else{
                code_error_cnt++;
            }
        }
    }
    //lcd显示界面1,界面2
    void lcd_process()
    {
        switch(lcd_show_conv)
        {
            case 0:
                if(lcd_clear_flag == 1){
                    lcd_clear_flag = 0;
                    LCD_Clear(Black);
                }
                sprintf(lcd_str, "       PSD          ");
                LCD_DisplayStringLine(Line2, (uint8_t*)lcd_str);
                sprintf(lcd_str, "    B1:%c            ", set_code[0]);
                LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
                sprintf(lcd_str, "    B2:%c            ", set_code[1]);
                LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
                sprintf(lcd_str, "    B3:%c            ", set_code[2]);
                LCD_DisplayStringLine(Line6, (uint8_t*)lcd_str);
                break;
            case 1:
                if(lcd_clear_flag == 0){
                    lcd_clear_flag = 1;
                    LCD_Clear(Black);
                }
                sprintf(lcd_str, "       STA          ");
                LCD_DisplayStringLine(Line2, (uint8_t*)lcd_str);
                sprintf(lcd_str, "    F:2000Hz        ");
                LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
                sprintf(lcd_str, "    D:10%%          ");
                LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
                break;
        }
    }
    
    //led控制
    void led_process()
    {
        if(tim_5s != 0){
            ld_flag = 1;
        }else{
            ld_flag = 0;
        }
        if(code_error_cnt == 3){
            code_error_cnt = 0;
            ld2_tim_5s = 1;
        }
        if(ld2_tim_5s != 0){
            if(ld2_tim_5s == 51) ld2_tim_5s = 0;
            ld_flag += ld2_tim_5s%2 == 0 ? (0<<1):(1<<1);
        }else{
            ld_flag += 0<<1;
        }
        HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2, 1);
        GPIOC->ODR = 0xffff ^ (ld_flag << 8);
        HAL_GPIO_WritePin(GPIOD,GPIO_PIN_2, 0);
    }
    
    //解析uart接收数据,返回值测试的时候使用,成功可以不用返回值,因为不做任何处理
    u8 analyze_uart_data()
    {
        if(strncmp(uart_rx_data, default_code, 3)) return 1;   //判断前三位和默认密码是否相等
        for(u8 i=4;i<7;i++){                                 //判断新密码格式是否正确
            if(uart_rx_data[i] < '0' || uart_rx_data[i] > '9') return 2;
        }
        if(strncpy(default_code, uart_rx_data+4, 3)) return 3;  //判断密码是否改成功
        return 0;
    }
    
    //tim2pwm周期中断
    void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
    {
        if(lcd_show_conv == 0){     //输入密码界面1KHz的方波
            PWM_1KHz_flag++;
            if(PWM_1KHz_flag == 2){      //两个周期高电平
                TIM2->CCR2 = 4999;
            }else if(PWM_1KHz_flag == 4){ //两个周期低电平 
                PWM_1KHz_flag = 0;
                TIM2->CCR2 = 0;
            }
        }else{                  //密码正确输出2Khz10%占空比pwm
            if(tim_5s == 0) tim_5s = 1;
            if(tim_5s == 51) {
                lcd_show_conv = 0;
                tim_5s = 0;
            }
            TIM2->CCR2 = 499;
        }
    }
    //tim3 0.1s时基中断
    void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
    {
        if(tim_5s != 0) tim_5s++;
        if(ld2_tim_5s != 0) ld2_tim_5s++;
        led_process();
        HAL_UARTEx_ReceiveToIdle_IT(&huart1, (uint8_t*)uart_rx_data, 7);   //周期开启uart接收中断
    }
    //uart接收事件中断
    void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
    {
        analyze_uart_data();
    }
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    

    3.第十三届题目



    作者::눈_눈:

    物联沃分享整理
    物联沃-IOTWORD物联网 » 蓝桥杯嵌入式组第十三届省赛STM32G431RBT6源码解析及题目详解

    发表回复