蓝桥杯嵌入式组第十四届省赛题目深度解析:STM32G431RBT6源码实现详解

文章目录

  • 1.题目解析
  • 1.1 分而治之,藕断丝连
  • 1.2 模块化思维导图
  • 1.3 模块解析
  • 1.3.1 KEY模块
  • 1.3.2 LED模块
  • 1.3.3 LCD模块
  • 1.3.4 TIM模块
  • 1.3.4.1 频率变化处理
  • 1.3.4.1 占空比计算
  • 1.3.5 ADC模块
  • 2.源码
  • 2.1cubemx配置
  • 3.第十四届题目
  • 前言:STM32G431RBT6实现嵌入式组第十四届题目解析+源码,本文默认读者具备基础的stm32知识。文章末尾附有第十四届题目。

    1.题目解析

    1.1 分而治之,藕断丝连

    还是那句话,将不同模块进行封装,通过变量进行模块间的合作。
    函数将模块分而治之,变量使模块间藕断丝连。

    1.2 模块化思维导图

    下图根据题目梳理。还是使用思维导图。

    1.3 模块解析

    1.3.1 KEY模块

    还是控制按一次处理一次。老朋友了我们就不多说了,题目限制了按键消抖和单次处理,所以我们要加上消抖,和第前几届的处理一模一样。
    正常按键逻辑:
    开始按下—>按下—>释放;
    但是题目要求得按一次处理一次,根据代码逻辑加了一种等待释放状态
    根据机械按键的特性开始和结束都得消抖,加上按一次执行一次,所以我们的处理逻辑是:
    开始按下—>按下消抖—>短按—>等待弹起—>长按—>弹起—>弹起消抖—>释放;
    为了实现按一次执行一次,中间加了一个等待弹起状态(key_state_gain()函数获取到按键状态,key_state_set()设置按键对应按键涉及标志位,下一次进入到key_state_gain()函数中,按键状态就变成了等待弹起状态,这就保证了,短按长按只执行key_state_set()一次)
    这里主要说逻辑,具体看源码

    if(按键按下){
    	if(是否是释放状态){					//开始按下
    		进入消抖状态,开始消抖计时
    	}
    	else if(是否是消抖状态){    			//按下消抖
    		if(当前时间-消抖计时>=消抖时长){
    			消抖完成,进入按下状态
    		}
    	}
    	else if(是否是短按状态 || 是否是长按状态){				//等待弹起状态
    		等待释放状态
    		记录长按2s开始时间
    	}
    	else if(是否是等待状态){              //长按实现
    		if(时间达到2s) 长按状态
    	}
    }
    else{//没有按下
    	if(是否是等待释放或者按下状态){		//弹起
    		进入消抖状态,开始消抖计时
    	}
    	else if(是否是消抖状态){				//弹起消抖
    		if(当前时间-消抖计时>=消抖时长){
    			消抖完成,按键释放
    		}
    	}
    }
    

    1.3.2 LED模块

    ld1:数据界面亮,否则灭;
    ld2:频率切换期间,以0.1s间隔闪烁;
    ld3:占空比锁定亮,否则灭;
    其他led保持熄灭状态。
    解决办法,设置一个标志位代表ld1~ld8,改变对应位的的值,再将标志位写入ODR寄存器中来控制led的亮灭。
    具体实现看源码

    1.3.3 LCD模块

    lcd显示三个界面,注意首次切换的时候得清屏。
    根据B1进行三个界面的切换;
    状态0:DATA;

    状态1:PARA;

    状态1:RECD。

    具体实现看源码

    1.3.4 TIM模块

    TIM4产生0.1s时基。PSC:1699,ARR:9999;
    TIM2,chn2: 16, 2499 , 4KHzPWM;
    TIM3,chn2: 169, 9999, 捕获范围T<=10ms。
    PSC和ARR计算公式(计算周期就是频率的倒数):

    1.3.4.1 频率变化处理
    void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)   //pa1
    {
        static uint32_t current_freq = 4000;
        if(HL_5s_run_flag == 1){
            if(HAL_GetTick() - tim_100ms >= 100){
                tim_100ms = HAL_GetTick();
                if(HL_conv_flag == 0){
                    current_freq = current_freq <8000 ? current_freq+80 : 8000;
                    TIM2->ARR = TIM2->ARR > 499 ? (uint32_t)4000000.0/current_freq-1 : 499;
                }
                else{
                    current_freq = current_freq >4000 ? current_freq-80 : 4000;
                    TIM2->ARR = TIM2->ARR < 999 ? (uint32_t)4000000.0/current_freq-1 : 999;
                }
            }
        }
        TIM2->CCR2 = (uint32_t)1.0*current_duty*TIM2->ARR/100.0;
    }
    
    1.3.4.1 占空比计算

    看图可以知道这是一个分段函数。

    我们可以这样解决

    float caculate_duty()
    {
        if(adc_smp_volt<=1.0){
            return 0.1;
        }
        else if(adc_smp_volt>1.0 && adc_smp_volt<=3.0){
            return (0.375*adc_smp_volt - 0.275);
        }
        else return 0.85;
    }
    

    1.3.5 ADC模块

    这里adc采集R37电位器电压,这里就不多说。
    具体请看源码

    2.源码

    我所有的实现都在main.c文件中。

    2.1cubemx配置

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2025 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "adc.h"
    #include "tim.h"
    #include "gpio.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    #include "stdio.h"
    #include "lcd.h"
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    
    /* USER CODE BEGIN PV */
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    enum{    //按键状态
        key_released = 0U,
        key_reduction,
        key_short_pressed,
        key_short_wait,
        key_long_pressed,
        key_long_wait,
    };
    
    //按键状态,按键电平状态
    uint8_t key_state[4] = {0}, key_volt[4] = {0};
    uint32_t key_redu_tim = 0, key_2s_tim = 0;   //记录时间戳
    float adc_smp_volt = 0.0f;   //adc采集电压
    struct{
        uint16_t old_ccr;
        uint16_t new_ccr;
        float freq;
    }PA7freq;           //输入捕获频率
    
    float v_val = 0.0;  //v = f*2*PI*R / 100K
    float H_max_val = 0.0, L_max_val = 0.0;   //高低速最大值记录
    
    #define PI 3.14
    
    void gain_key_state()   //获取按键状态
    {
        key_volt[0] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
        key_volt[1] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
        key_volt[2] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
        key_volt[3] = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
        for(uint8_t i=0;i<4;i++)
        {
            if(!key_volt[i])
            {
                if(key_state[i] == key_released){
                    key_state[i] = key_reduction;
                    key_redu_tim = HAL_GetTick();
                }
                else if(key_state[i] == key_reduction){
                    if(HAL_GetTick() - key_redu_tim >= 10){
                        key_state[i] = key_short_pressed;
                    }
                }
                else if(key_state[i] == key_short_pressed){
                    key_state[i] = key_short_wait;
                    key_2s_tim = HAL_GetTick();
                }
                else if(key_state[i] == key_short_wait){
                    if(HAL_GetTick()- key_2s_tim >= 2000){
                        key_state[i] = key_long_pressed;
                    }
                }
                else if(key_state[i] == key_long_pressed){
                    key_state[i] = key_long_wait;
                }  
            }
            else{
                if(key_state[i] != key_reduction && key_state[i] != key_released){
                    key_state[i] = key_reduction;
                    key_redu_tim = HAL_GetTick();
                }
                else if(key_state[i] == key_reduction){
                    if(HAL_GetTick() - key_redu_tim >= 10){
                        key_state[i] = key_released;
                    }
                }
            }
        }
    }
    
    //lcd转换,HL转换,HL切换运行态, RK切换, 锁定
    uint8_t lcd_conv_flag = 0, HL_conv_flag = 0, HL_5s_run_flag = 0, RK_conv_flag = 0, lock_flag = 0;
    uint8_t RK_set[2] = {1,1}, RK[2] = {1,1};   //RK数组
    uint32_t HL_conv_5s = 0, N_cnt = 0;   //HL转换态时间戳, N计数
    
    void key_process()   //按键状态设置对应标志位
    {
        if(key_state[0] == key_short_pressed){
            lcd_conv_flag = lcd_conv_flag!=2 ? lcd_conv_flag+1 : 0;
            RK_conv_flag = 0;
            if(lcd_conv_flag == 2){
                RK[0] = RK_set[0];
                RK[1] = RK_set[1];
            }
        }
        else if(key_state[1] == key_short_pressed){
            if(lcd_conv_flag == 0){ //数据界面
                if(HL_5s_run_flag == 0){
                    HL_conv_5s = HAL_GetTick();
                    HL_5s_run_flag = 1;
                }
            }
            else if(lcd_conv_flag == 1){   //参数界面
                RK_conv_flag ^= 1;
            }
        }
        
        else if(key_state[2] == key_short_pressed){   //+
            if(lcd_conv_flag==1) RK_set[RK_conv_flag] = RK_set[RK_conv_flag] !=10 ? RK_set[RK_conv_flag]+1 : 1;
        }
        else if(key_state[3] == key_short_pressed){
            lock_flag = 0;
            if(lcd_conv_flag==1) RK_set[RK_conv_flag] = RK_set[RK_conv_flag] != 1 ? RK_set[RK_conv_flag]-1 : 10;
        }
        else if(key_state[3] == key_long_pressed){
            if(!lcd_conv_flag) lock_flag = 1;
        }
        
        if(HAL_GetTick() - HL_conv_5s >=5000 && HL_5s_run_flag == 1){
            HL_conv_flag ^= 1;
            HL_5s_run_flag = 0;
            N_cnt++;
        }
    }
    
    uint8_t caculate_duty()   //计算占空比
    {
        if(adc_smp_volt <= 1.0) return 10;
        else if(adc_smp_volt>1.0 && adc_smp_volt <= 3.0) return (uint8_t)(35.0*adc_smp_volt - 25.0);
        else return 80;
    }
    
    uint8_t lcd_clear_flag = 0;  //lcd清屏
    char lcd_str[21] = {0};   //lcd显示
    void lcd_process()    //lcd处理
    { 
        switch(lcd_conv_flag){
            case 0:
                if(lcd_clear_flag == 2){
                    LCD_Clear(Black);
                    lcd_clear_flag = 0;
                }
                LCD_DisplayStringLine(Line1, (uint8_t*)"        DATA  ");
                if(HL_conv_flag == 0) sprintf(lcd_str, "     M=L     ");
                else sprintf(lcd_str, "     M=H     ");
                LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
                sprintf(lcd_str, "     P=%hhu%%   ", caculate_duty());
                LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
                sprintf(lcd_str, "     V=%.1f     ", v_val);
                LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
                break;
            case 1:
                if(lcd_clear_flag == 0){
                    LCD_Clear(Black);
                    lcd_clear_flag = 1;
                }
                LCD_DisplayStringLine(Line1, (uint8_t*)"        PARA  ");
                sprintf(lcd_str, "     R=%hhu     ", RK_set[0]);
                LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
                sprintf(lcd_str, "     K=%hhu     ", RK_set[1]);
                LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
                break;
            case 2:
                if(lcd_clear_flag == 1){
                    LCD_Clear(Black);
                    lcd_clear_flag = 2;
                }
                LCD_DisplayStringLine(Line1, (uint8_t*)"        RECD  ");
                sprintf(lcd_str, "     N=%u     ", N_cnt);
                LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
                sprintf(lcd_str, "     MH=%.1f     ", H_max_val);
                LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
                sprintf(lcd_str, "     ML=%.1f     ", L_max_val);
                LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
                break;
        }
    }
    
    uint8_t led_flag = 0, ld2_flag = 0;    //ld标志
    uint32_t led_100ms_tim = 0;    //led100ms记录时间戳
    void led_process()
    {
        if(lcd_conv_flag == 0) led_flag = 1;
        else led_flag = 0;
        if(HL_5s_run_flag == 1){
            if(HAL_GetTick()-led_100ms_tim >= 100){
                led_100ms_tim = HAL_GetTick();
                ld2_flag ^=1;
                led_flag += ld2_flag << 1;
            }
        }
        if(lock_flag == 1) led_flag += 1 << 2;
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 1);
        GPIOC->ODR = 0xffff ^ led_flag << 8;
        HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 0);
    }
    
    
    uint32_t period_start_adc = 0;    //周期开启adc
    uint8_t current_duty = 0;          //当前占空比
    
    void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
    {
        if(lock_flag == 0) adc_smp_volt = HAL_ADC_GetValue(hadc)*3.3/4096.0;
        current_duty = caculate_duty();
        period_start_adc = HAL_GetTick();
    }
    
    uint32_t max_recd_2s = 0;   //记录最大值时间戳
    float detect_freq = 0;    //监测频率
    
    void caculate_max(float *max)    //计算最大值
    {
        if(PA7freq.freq > detect_freq){
            detect_freq = PA7freq.freq;
            max_recd_2s = HAL_GetTick();
        }
        else if(HAL_GetTick() - max_recd_2s >= 2000){
             *max = detect_freq*2*PI*RK[0] / (100.0*RK[1]);
        }
    }
    
    void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)  //pa7 tim3_chn2
    {
        PA7freq.new_ccr = TIM3->CCR2;
        if(PA7freq.new_ccr > PA7freq.old_ccr){
            PA7freq.freq = 40000.0*100.0/(PA7freq.new_ccr-PA7freq.old_ccr);
        }
        else{
            PA7freq.freq = 40000.0*100.0/(PA7freq.new_ccr+40000-PA7freq.old_ccr);
        }
        PA7freq.old_ccr = PA7freq.new_ccr;
    }
    
    uint32_t tim_100ms = 0;
    void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)   //pa1
    {
        static uint32_t current_freq = 4000;
        if(HL_5s_run_flag == 1){
            if(HAL_GetTick() - tim_100ms >= 100){
                tim_100ms = HAL_GetTick();
                if(HL_conv_flag == 0){
                    current_freq = current_freq <8000 ? current_freq+80 : 8000;
                    TIM2->ARR = TIM2->ARR > 499 ? (uint32_t)4000000.0/current_freq-1 : 499;
                }
                else{
                    current_freq = current_freq >4000 ? current_freq-80 : 4000;
                    TIM2->ARR = TIM2->ARR < 999 ? (uint32_t)4000000.0/current_freq-1 : 999;
                }
            }
        }
        TIM2->CCR2 = (uint32_t)1.0*current_duty*TIM2->ARR/100.0;
    }
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
    
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
        LCD_Init();
        LCD_SetBackColor(Black);
        LCD_SetTextColor(White);
        LCD_Clear(Black);
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_TIM2_Init();
      MX_TIM3_Init();
      MX_ADC2_Init();
      MX_TIM8_Init();
      /* USER CODE BEGIN 2 */
        HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED);
        HAL_ADC_Start_IT(&hadc2);
        HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_2);
        HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
        
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
          gain_key_state();
          key_process();
          v_val =  PA7freq.freq*2*PI*RK[0] / (100.0*RK[1]);
          lcd_process();
          if(HAL_GetTick() - period_start_adc >= 10){
            HAL_ADC_Start_IT(&hadc2);
          }
          if(HL_conv_flag == 1)caculate_max(&H_max_val);
          else caculate_max(&L_max_val);
          led_process();
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Configure the main internal regulator output voltage
      */
      HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
      RCC_OscInitStruct.HSEState = RCC_HSE_ON;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
      RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
      RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
      RCC_OscInitStruct.PLL.PLLN = 20;
      RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
      RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
      RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /* USER CODE BEGIN 4 */
    
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    
    

    3.第十四届题目




    作者::눈_눈:

    物联沃分享整理
    物联沃-IOTWORD物联网 » 蓝桥杯嵌入式组第十四届省赛题目深度解析:STM32G431RBT6源码实现详解

    发表回复