蓝桥杯嵌入式组第十四届省赛题目深度解析:STM32G431RBT6源码实现详解
文章目录
前言:STM32G431RBT6实现嵌入式组第十四届题目解析+源码,本文默认读者具备基础的stm32知识。文章末尾附有第十四届题目。
1.题目解析
1.1 分而治之,藕断丝连
还是那句话,将不同模块进行封装,通过变量进行模块间的合作。
函数将模块分而治之,变量使模块间藕断丝连。
1.2 模块化思维导图
下图根据题目梳理。还是使用思维导图。
1.3 模块解析
1.3.1 KEY模块
还是控制按一次处理一次。老朋友了我们就不多说了,题目限制了按键消抖和单次处理,所以我们要加上消抖,和第前几届的处理一模一样。
正常按键逻辑:
开始按下—>按下—>释放;
但是题目要求得按一次处理一次,根据代码逻辑加了一种等待释放状态
根据机械按键的特性开始和结束都得消抖,加上按一次执行一次,所以我们的处理逻辑是:
开始按下—>按下消抖—>短按—>等待弹起—>长按—>弹起—>弹起消抖—>释放;
为了实现按一次执行一次,中间加了一个等待弹起状态(key_state_gain()函数获取到按键状态,key_state_set()设置按键对应按键涉及标志位,下一次进入到key_state_gain()函数中,按键状态就变成了等待弹起状态,这就保证了,短按长按只执行key_state_set()一次)
这里主要说逻辑,具体看源码
if(按键按下){
if(是否是释放状态){ //开始按下
进入消抖状态,开始消抖计时
}
else if(是否是消抖状态){ //按下消抖
if(当前时间-消抖计时>=消抖时长){
消抖完成,进入按下状态
}
}
else if(是否是短按状态 || 是否是长按状态){ //等待弹起状态
等待释放状态
记录长按2s开始时间
}
else if(是否是等待状态){ //长按实现
if(时间达到2s) 长按状态
}
}
else{//没有按下
if(是否是等待释放或者按下状态){ //弹起
进入消抖状态,开始消抖计时
}
else if(是否是消抖状态){ //弹起消抖
if(当前时间-消抖计时>=消抖时长){
消抖完成,按键释放
}
}
}
1.3.2 LED模块
ld1:数据界面亮,否则灭;
ld2:频率切换期间,以0.1s间隔闪烁;
ld3:占空比锁定亮,否则灭;
其他led保持熄灭状态。
解决办法,设置一个标志位代表ld1~ld8,改变对应位的的值,再将标志位写入ODR寄存器中来控制led的亮灭。
具体实现看源码
1.3.3 LCD模块
lcd显示三个界面,注意首次切换的时候得清屏。
根据B1进行三个界面的切换;
状态0:DATA;
状态1:PARA;
状态1:RECD。
具体实现看源码
1.3.4 TIM模块
TIM4产生0.1s时基。PSC:1699,ARR:9999;
TIM2,chn2: 16, 2499 , 4KHzPWM;
TIM3,chn2: 169, 9999, 捕获范围T<=10ms。
PSC和ARR计算公式(计算周期就是频率的倒数):
1.3.4.1 频率变化处理
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) //pa1
{
static uint32_t current_freq = 4000;
if(HL_5s_run_flag == 1){
if(HAL_GetTick() - tim_100ms >= 100){
tim_100ms = HAL_GetTick();
if(HL_conv_flag == 0){
current_freq = current_freq <8000 ? current_freq+80 : 8000;
TIM2->ARR = TIM2->ARR > 499 ? (uint32_t)4000000.0/current_freq-1 : 499;
}
else{
current_freq = current_freq >4000 ? current_freq-80 : 4000;
TIM2->ARR = TIM2->ARR < 999 ? (uint32_t)4000000.0/current_freq-1 : 999;
}
}
}
TIM2->CCR2 = (uint32_t)1.0*current_duty*TIM2->ARR/100.0;
}
1.3.4.1 占空比计算
看图可以知道这是一个分段函数。
我们可以这样解决
float caculate_duty()
{
if(adc_smp_volt<=1.0){
return 0.1;
}
else if(adc_smp_volt>1.0 && adc_smp_volt<=3.0){
return (0.375*adc_smp_volt - 0.275);
}
else return 0.85;
}
1.3.5 ADC模块
这里adc采集R37电位器电压,这里就不多说。
具体请看源码
2.源码
我所有的实现都在main.c文件中。
2.1cubemx配置
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
#include "lcd.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
enum{ //按键状态
key_released = 0U,
key_reduction,
key_short_pressed,
key_short_wait,
key_long_pressed,
key_long_wait,
};
//按键状态,按键电平状态
uint8_t key_state[4] = {0}, key_volt[4] = {0};
uint32_t key_redu_tim = 0, key_2s_tim = 0; //记录时间戳
float adc_smp_volt = 0.0f; //adc采集电压
struct{
uint16_t old_ccr;
uint16_t new_ccr;
float freq;
}PA7freq; //输入捕获频率
float v_val = 0.0; //v = f*2*PI*R / 100K
float H_max_val = 0.0, L_max_val = 0.0; //高低速最大值记录
#define PI 3.14
void gain_key_state() //获取按键状态
{
key_volt[0] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_0);
key_volt[1] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_1);
key_volt[2] = HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_2);
key_volt[3] = HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0);
for(uint8_t i=0;i<4;i++)
{
if(!key_volt[i])
{
if(key_state[i] == key_released){
key_state[i] = key_reduction;
key_redu_tim = HAL_GetTick();
}
else if(key_state[i] == key_reduction){
if(HAL_GetTick() - key_redu_tim >= 10){
key_state[i] = key_short_pressed;
}
}
else if(key_state[i] == key_short_pressed){
key_state[i] = key_short_wait;
key_2s_tim = HAL_GetTick();
}
else if(key_state[i] == key_short_wait){
if(HAL_GetTick()- key_2s_tim >= 2000){
key_state[i] = key_long_pressed;
}
}
else if(key_state[i] == key_long_pressed){
key_state[i] = key_long_wait;
}
}
else{
if(key_state[i] != key_reduction && key_state[i] != key_released){
key_state[i] = key_reduction;
key_redu_tim = HAL_GetTick();
}
else if(key_state[i] == key_reduction){
if(HAL_GetTick() - key_redu_tim >= 10){
key_state[i] = key_released;
}
}
}
}
}
//lcd转换,HL转换,HL切换运行态, RK切换, 锁定
uint8_t lcd_conv_flag = 0, HL_conv_flag = 0, HL_5s_run_flag = 0, RK_conv_flag = 0, lock_flag = 0;
uint8_t RK_set[2] = {1,1}, RK[2] = {1,1}; //RK数组
uint32_t HL_conv_5s = 0, N_cnt = 0; //HL转换态时间戳, N计数
void key_process() //按键状态设置对应标志位
{
if(key_state[0] == key_short_pressed){
lcd_conv_flag = lcd_conv_flag!=2 ? lcd_conv_flag+1 : 0;
RK_conv_flag = 0;
if(lcd_conv_flag == 2){
RK[0] = RK_set[0];
RK[1] = RK_set[1];
}
}
else if(key_state[1] == key_short_pressed){
if(lcd_conv_flag == 0){ //数据界面
if(HL_5s_run_flag == 0){
HL_conv_5s = HAL_GetTick();
HL_5s_run_flag = 1;
}
}
else if(lcd_conv_flag == 1){ //参数界面
RK_conv_flag ^= 1;
}
}
else if(key_state[2] == key_short_pressed){ //+
if(lcd_conv_flag==1) RK_set[RK_conv_flag] = RK_set[RK_conv_flag] !=10 ? RK_set[RK_conv_flag]+1 : 1;
}
else if(key_state[3] == key_short_pressed){
lock_flag = 0;
if(lcd_conv_flag==1) RK_set[RK_conv_flag] = RK_set[RK_conv_flag] != 1 ? RK_set[RK_conv_flag]-1 : 10;
}
else if(key_state[3] == key_long_pressed){
if(!lcd_conv_flag) lock_flag = 1;
}
if(HAL_GetTick() - HL_conv_5s >=5000 && HL_5s_run_flag == 1){
HL_conv_flag ^= 1;
HL_5s_run_flag = 0;
N_cnt++;
}
}
uint8_t caculate_duty() //计算占空比
{
if(adc_smp_volt <= 1.0) return 10;
else if(adc_smp_volt>1.0 && adc_smp_volt <= 3.0) return (uint8_t)(35.0*adc_smp_volt - 25.0);
else return 80;
}
uint8_t lcd_clear_flag = 0; //lcd清屏
char lcd_str[21] = {0}; //lcd显示
void lcd_process() //lcd处理
{
switch(lcd_conv_flag){
case 0:
if(lcd_clear_flag == 2){
LCD_Clear(Black);
lcd_clear_flag = 0;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" DATA ");
if(HL_conv_flag == 0) sprintf(lcd_str, " M=L ");
else sprintf(lcd_str, " M=H ");
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
sprintf(lcd_str, " P=%hhu%% ", caculate_duty());
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
sprintf(lcd_str, " V=%.1f ", v_val);
LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
break;
case 1:
if(lcd_clear_flag == 0){
LCD_Clear(Black);
lcd_clear_flag = 1;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" PARA ");
sprintf(lcd_str, " R=%hhu ", RK_set[0]);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
sprintf(lcd_str, " K=%hhu ", RK_set[1]);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
break;
case 2:
if(lcd_clear_flag == 1){
LCD_Clear(Black);
lcd_clear_flag = 2;
}
LCD_DisplayStringLine(Line1, (uint8_t*)" RECD ");
sprintf(lcd_str, " N=%u ", N_cnt);
LCD_DisplayStringLine(Line3, (uint8_t*)lcd_str);
sprintf(lcd_str, " MH=%.1f ", H_max_val);
LCD_DisplayStringLine(Line4, (uint8_t*)lcd_str);
sprintf(lcd_str, " ML=%.1f ", L_max_val);
LCD_DisplayStringLine(Line5, (uint8_t*)lcd_str);
break;
}
}
uint8_t led_flag = 0, ld2_flag = 0; //ld标志
uint32_t led_100ms_tim = 0; //led100ms记录时间戳
void led_process()
{
if(lcd_conv_flag == 0) led_flag = 1;
else led_flag = 0;
if(HL_5s_run_flag == 1){
if(HAL_GetTick()-led_100ms_tim >= 100){
led_100ms_tim = HAL_GetTick();
ld2_flag ^=1;
led_flag += ld2_flag << 1;
}
}
if(lock_flag == 1) led_flag += 1 << 2;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 1);
GPIOC->ODR = 0xffff ^ led_flag << 8;
HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, 0);
}
uint32_t period_start_adc = 0; //周期开启adc
uint8_t current_duty = 0; //当前占空比
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
if(lock_flag == 0) adc_smp_volt = HAL_ADC_GetValue(hadc)*3.3/4096.0;
current_duty = caculate_duty();
period_start_adc = HAL_GetTick();
}
uint32_t max_recd_2s = 0; //记录最大值时间戳
float detect_freq = 0; //监测频率
void caculate_max(float *max) //计算最大值
{
if(PA7freq.freq > detect_freq){
detect_freq = PA7freq.freq;
max_recd_2s = HAL_GetTick();
}
else if(HAL_GetTick() - max_recd_2s >= 2000){
*max = detect_freq*2*PI*RK[0] / (100.0*RK[1]);
}
}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) //pa7 tim3_chn2
{
PA7freq.new_ccr = TIM3->CCR2;
if(PA7freq.new_ccr > PA7freq.old_ccr){
PA7freq.freq = 40000.0*100.0/(PA7freq.new_ccr-PA7freq.old_ccr);
}
else{
PA7freq.freq = 40000.0*100.0/(PA7freq.new_ccr+40000-PA7freq.old_ccr);
}
PA7freq.old_ccr = PA7freq.new_ccr;
}
uint32_t tim_100ms = 0;
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) //pa1
{
static uint32_t current_freq = 4000;
if(HL_5s_run_flag == 1){
if(HAL_GetTick() - tim_100ms >= 100){
tim_100ms = HAL_GetTick();
if(HL_conv_flag == 0){
current_freq = current_freq <8000 ? current_freq+80 : 8000;
TIM2->ARR = TIM2->ARR > 499 ? (uint32_t)4000000.0/current_freq-1 : 499;
}
else{
current_freq = current_freq >4000 ? current_freq-80 : 4000;
TIM2->ARR = TIM2->ARR < 999 ? (uint32_t)4000000.0/current_freq-1 : 999;
}
}
}
TIM2->CCR2 = (uint32_t)1.0*current_duty*TIM2->ARR/100.0;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
LCD_Init();
LCD_SetBackColor(Black);
LCD_SetTextColor(White);
LCD_Clear(Black);
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM2_Init();
MX_TIM3_Init();
MX_ADC2_Init();
MX_TIM8_Init();
/* USER CODE BEGIN 2 */
HAL_ADCEx_Calibration_Start(&hadc2, ADC_SINGLE_ENDED);
HAL_ADC_Start_IT(&hadc2);
HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_2);
HAL_TIM_IC_Start_IT(&htim3, TIM_CHANNEL_2);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
gain_key_state();
key_process();
v_val = PA7freq.freq*2*PI*RK[0] / (100.0*RK[1]);
lcd_process();
if(HAL_GetTick() - period_start_adc >= 10){
HAL_ADC_Start_IT(&hadc2);
}
if(HL_conv_flag == 1)caculate_max(&H_max_val);
else caculate_max(&L_max_val);
led_process();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
3.第十四届题目
作者::눈_눈: