好像还挺好玩的GAN重制版4——Pytorch搭建SRGAN平台进行图片超分辨率提升

好像还挺好玩的GAN重制版4——Pytorch搭建SRGAN平台进行图片超分辨率提升

  • 学习前言
  • 源码下载地址
  • 网络构建
  • 一、什么是SRGAN
  • 二、生成网络的构建
  • 三、判别网络的构建
  • 训练思路
  • 一、判别器的训练
  • 二、生成器的训练
  • 利用SRGAN生成图片
  • 一、数据集的准备
  • 二、数据集的处理
  • 三、模型训练
  • 学习前言

    我又死了我又死了我又死了!

    源码下载地址

    https://github.com/bubbliiiing/srgan-pytorch

    喜欢的可以点个star噢。

    网络构建

    一、什么是SRGAN

    SRGAN出自论文Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network。

    如果将SRGAN看作一个黑匣子,其主要的功能就是输入一张低分辨率图片,生成高分辨率图片。

    该文章提到,普通的超分辨率模型训练网络时只用到了均方差作为损失函数,虽然能够获得很高的峰值信噪比,但是恢复出来的图像通常会丢失高频细节

    SRGAN利用感知损失(perceptual loss)和对抗损失(adversarial loss)来提升恢复出的图片的真实感

    二、生成网络的构建


    生成网络的构成如上图所示,生成网络的作用是输入一张低分辨率图片,生成高分辨率图片。

    SRGAN的生成网络由三个部分组成。
    1、低分辨率图像进入后会经过一个卷积+RELU函数
    2、然后经过B个残差网络结构,每个残差结构都包含两个卷积+标准化+RELU,还有一个残差边。
    3、然后进入上采样部分,在经过两次上采样后,原图的高宽变为原来的4倍,实现分辨率的提升

    前两个部分用于特征提取,第三部分用于提高分辨率。

    import math
    import torch
    from torch import nn
    
    class ResidualBlock(nn.Module):
        def __init__(self, channels):
            super(ResidualBlock, self).__init__()
            self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
            self.bn1 = nn.BatchNorm2d(channels)
            self.prelu = nn.PReLU(channels)
            self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
            self.bn2 = nn.BatchNorm2d(channels)
    
        def forward(self, x):
            short_cut = x
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.prelu(x)
    
            x = self.conv2(x)
            x = self.bn2(x)
    
            return x + short_cut
    
    class UpsampleBLock(nn.Module):
        def __init__(self, in_channels, up_scale):
            super(UpsampleBLock, self).__init__()
            self.conv = nn.Conv2d(in_channels, in_channels * up_scale ** 2, kernel_size=3, padding=1)
            self.pixel_shuffle = nn.PixelShuffle(up_scale)
            self.prelu = nn.PReLU(in_channels)
    
        def forward(self, x):
            x = self.conv(x)
            x = self.pixel_shuffle(x)
            x = self.prelu(x)
            return x
    
    class Generator(nn.Module):
        def __init__(self, scale_factor, num_residual=16):
            upsample_block_num = int(math.log(scale_factor, 2))
    
            super(Generator, self).__init__()
    
            self.block_in = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=9, padding=4),
                nn.PReLU(64)
            )
    
            self.blocks = []
            for _ in range(num_residual):
                self.blocks.append(ResidualBlock(64))
            self.blocks = nn.Sequential(*self.blocks)
            
            self.block_out = nn.Sequential(
                nn.Conv2d(64, 64, kernel_size=3, padding=1),
                nn.BatchNorm2d(64)
            )
    
            self.upsample = [UpsampleBLock(64, 2) for _ in range(upsample_block_num)]
            self.upsample.append(nn.Conv2d(64, 3, kernel_size=9, padding=4))
            self.upsample = nn.Sequential(*self.upsample)
    
        def forward(self, x):
            x = self.block_in(x)
            short_cut = x
            x = self.blocks(x)
            x = self.block_out(x)
    
            upsample = self.upsample(x + short_cut)
            return torch.tanh(upsample)
    

    三、判别网络的构建


    判别网络的构成如上图所示:

    SRGAN的判别网络由不断重复的 卷积+LeakyRELU和标准化 组成。
    对于判断网络来讲,它的目的是判断输入图片的真假,它的输入是图片,输出是判断结果

    判断结果处于0-1之间,利用接近1代表判断为真图片,接近0代表判断为假图片。

    判断网络的构建和普通卷积网络差距不大,都是不断的卷积对图片进行下采用,在多次卷积后,最终接一次全连接判断结果。

    实现代码如下:

    class Discriminator(nn.Module):
        def __init__(self):
            super(Discriminator, self).__init__()
            self.net = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, padding=1),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(64),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(64, 128, kernel_size=3, padding=1),
                nn.BatchNorm2d(128),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(128),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(128, 256, kernel_size=3, padding=1),
                nn.BatchNorm2d(256),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(256),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(256, 512, kernel_size=3, padding=1),
                nn.BatchNorm2d(512),
                nn.LeakyReLU(0.2),
    
                nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(512),
                nn.LeakyReLU(0.2),
    
                nn.AdaptiveAvgPool2d(1),
                nn.Conv2d(512, 1024, kernel_size=1),
                nn.LeakyReLU(0.2),
                nn.Conv2d(1024, 1, kernel_size=1)
            )
    
        def forward(self, x):
            batch_size = x.size(0)
            return torch.sigmoid(self.net(x).view(batch_size))
    

    训练思路

    SRGAN的训练可以分为生成器训练和判别器训练:
    每一个step中一般先训练判别器,然后训练生成器。

    一、判别器的训练

    训练判别器的时候我们希望判别器可以判断输入图片的真伪,因此我们的输入就是真图片、假图片和它们对应的标签

    因此判别器的训练步骤如下:

    1、随机选取batch_size个真实高分辨率图片。
    2、利用resize后的低分辨率图片,传入到Generator中生成batch_size个虚假高分辨率图片。
    3、真实图片的label为1,虚假图片的label为0,将真实图片和虚假图片当作训练集传入到Discriminator中进行训练。

    二、生成器的训练

    训练生成器的时候我们希望生成器可以生成极为真实的假图片。因此我们在训练生成器需要知道判别器认为什么图片是真图片。

    因此生成器的训练步骤如下:

    1、将低分辨率图像传入生成模型,得到虚假高分辨率图像,将虚假高分辨率图像获得判别结果与1进行对比得到loss。(与1对比的意思是,让生成器根据判别器判别的结果进行训练)。
    2、将真实高分辨率图像和虚假高分辨率图像传入VGG网络,获得两个图像的特征,通过这两个图像的特征进行比较获得loss

    利用SRGAN生成图片

    SRGAN的库整体结构如下:

    一、数据集的准备

    在训练前需要准备好数据集,数据集保存在datasets文件夹里面。

    二、数据集的处理

    打开txt_annotation.py,默认指向根目录下的datasets。运行txt_annotation.py。
    此时生成根目录下面的train_lines.txt。

    三、模型训练

    在完成数据集处理后,运行train.py即可开始训练。

    训练过程中,可在results文件夹内查看训练效果:

    来源:Bubbliiiing

    物联沃分享整理
    物联沃-IOTWORD物联网 » 好像还挺好玩的GAN重制版4——Pytorch搭建SRGAN平台进行图片超分辨率提升

    发表回复