语义分割系列5-Pspnet(pytorch实现)
Pspnet全名Pyramid Scene Parsing Network,论文地址:Pyramid Scene Parsing Network
论文名就是《Pyramid Scene Parsing Network》。
该模型提出是为了解决场景分析问题。针对FCN网络在场景分析数据集上存在的问题,Pspnet提出一系列改进方案,以提升场景分析中对于相似颜色、形状的物体的检测精度。

作者在ADE20K数据集上进行实验时,主要发现有如下3个问题:
- 错误匹配,FCN模型把水里的船预测成汽车,但是汽车是不会在水上的。因此,作者认为FCN缺乏收集上下文能力,导致了分类错误。
- 作者发现相似的标签会导致一些奇怪的错误,比如earth和field,mountain和hill,wall,house,building和skyscraper。FCN模型会出现混淆。
- 第三是小目标的丢失问题,像一些路灯、信号牌这种小物体,很难被FCN所发现。相反的,一些特别大的物体预测中,在感受野不够大的情况下,往往会丢失一部分信息,导致预测不连续。
为了解决这些问题,作者提出了Pyramid Pooling Module。
Pyramid Pooling Module
作者在文章中提出了Pyramid Pooling Module(池化金字塔结构)这一模块。
作者提到,在深层网络中,感受野的大小大致上体现了模型能获得的上下文新消息。尽管在理论上Resnet的感受野已经大于图像尺寸,但是实际上会小得多。这就导致了很多网络不能充分的将上下文信息结合起来,于是作者就提出了一种全局的先验方法-全局平均池化。
作者在PPM模块中并联了四个不同大小的全局池化层,将原始的feature map池化生成不同级别的特征图,经过卷积和上采样恢复到原始大小。这种操作聚合了多尺度的图像特征,生成了一个“hierarchical global prior”,融合了不同尺度和不同子区域之间的信息。最后,这个先验信息再和原始特征图进行相加,输入到最后的卷积模块完成预测。

Pspnet的核心就是PPM模块。其网络架构十分简单,backbone为resnet网络,将原始图像下采样8倍成特征图,特征图输入到PPM模块,并与其输出相加,最后经过卷积和8倍双线性差值上采样得到结果(图2)。
论文复现
本文主要在CamVid数据集上进行复现,数据集可以在另一篇博客中找到CamVid数据集的创建和使用。
Resnet
这里调用了pytorch官方写的ResNet50,替换最后两个layer为dialation模式,只采用8倍下采样。
from torchvision.models import resnet50, resnet101
from torchvision.models._utils import IntermediateLayerGetter
import torch
import torch.nn as nn
backbone=IntermediateLayerGetter(
resnet50(pretrained=False, replace_stride_with_dilation=[False, True, True]),
return_layers={'layer4': 'stage4'}
)
x = torch.randn(3, 3, 224, 224).cpu()
result = backbone(x)
for k, v in result.items():
print(k, v.shape)
pspnet
class PPM(nn.ModuleList):
def __init__(self, pool_sizes, in_channels, out_channels):
super(PPM, self).__init__()
self.pool_sizes = pool_sizes
self.in_channels = in_channels
self.out_channels = out_channels
for pool_size in pool_sizes:
self.append(
nn.Sequential(
nn.AdaptiveMaxPool2d(pool_size),
nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1),
)
)
def forward(self, x):
out_puts = []
for ppm in self:
ppm_out = nn.functional.interpolate(ppm(x),size=(x.size(2), x.size(3)),mode='bilinear', align_corners=True)
out_puts.append(ppm_out)
return out_puts
class PSPHEAD(nn.Module):
def __init__(self, in_channels, out_channels,pool_sizes = [1, 2, 3, 6],num_classes=31):
super(PSPHEAD, self).__init__()
self.pool_sizes = pool_sizes
self.num_classes = num_classes
self.in_channels = in_channels
self.out_channels = out_channels
self.psp_modules = PPM(self.pool_sizes, self.in_channels, self.out_channels)
self.final = nn.Sequential(
nn.Conv2d(self.in_channels + len(self.pool_sizes)*self.out_channels, self.out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(self.out_channels),
nn.ReLU(),
)
def forward(self, x):
out = self.psp_modules(x)
out.append(x)
out = torch.cat(out, 1)
out = self.final(out)
return out
class Pspnet(nn.Module):
def __init__(self, num_classes, pretrained_path=None):
super(Pspnet, self).__init__()
self.num_classes = num_classes
self.backbone = IntermediateLayerGetter(
resnet50(pretrained=False, replace_stride_with_dilation=[False, True, True]),
return_layers={'layer4': 'stage4'}
)
self.decoder = PSPHEAD(in_channels=2048, out_channels=512, pool_sizes = [1, 2, 3, 6], num_classes=self.num_classes)
self.cls_seg = nn.Sequential(
nn.Conv2d(512, self.num_classes, kernel_size=3, padding=1),
)
def forward(self, x):
_, _, h, w = x.size()
feats = self.backbone(x)
x = self.decoder(feats["stage4"])
x = nn.functional.interpolate(x, size=(h, w),mode='bilinear', align_corners=True)
x = self.cls_seg(x)
return x
if __name__ == "__main__":
model = Pspnet(num_classes=33)
model = model.cuda()
a = torch.ones([2, 3, 224, 224])
a = a.cuda()
print(model(a).shape)
数据集构建
# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
def __init__(self, images_dir, masks_dir):
self.transform = A.Compose([
A.Resize(448, 448),
A.HorizontalFlip(),
A.VerticalFlip(),
A.Normalize(),
ToTensorV2(),
])
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
def __getitem__(self, i):
# read data
image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
image = self.transform(image=image,mask=mask)
return image['image'], image['mask'][:,:,0]
def __len__(self):
return len(self.ids)
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
train_dataset = CamVidDataset(
x_train_dir,
y_train_dir,
)
val_dataset = CamVidDataset(
x_valid_dir,
y_valid_dir,
)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)
模型训练
model = Pspnet(num_classes=33)
model = model.cuda()
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss()
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
#训练50轮
epochs_num = 100
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus()):
timer, num_batches = d2l.Timer(), len(train_iter)
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
net = nn.DataParallel(net, device_ids=devices).to(devices[0])
loss_list = []
train_acc_list = []
test_acc_list = []
epochs_list = []
for epoch in range(num_epochs):
# Sum of training loss, sum of training accuracy, no. of examples,
# no. of predictions
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(
net, features, labels.long(), loss, trainer, devices)
metric.add(l, acc, labels.shape[0], labels.numel())
timer.stop()
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')
#---------保存训练数据---------------
df = pd.DataFrame()
loss_list.append(metric[0] / metric[2])
train_acc_list.append(metric[1] / metric[3])
test_acc_list.append(test_acc)
epochs_list.append(epoch)
df['epoch'] = epochs_list
df['loss'] = loss_list
df['train_acc'] = train_acc_list
df['test_acc'] = test_acc_list
df.to_excel("savefile/psp_voc2012.xlsx")
#----------------保存模型-------------------
if np.mod(epoch+1, 5) == 0:
torch.save(model.state_dict(), f'checkpoints/psp_{epoch}.pth')
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num)
训练结果
来源:yumaomi