车联网)BEVFusion:北京大学智能车联网

BEVFusion环境搭建

论文题目:BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

论文地址:https://arxiv.org/pdf/2205.13790.pdf

代码地址:ADLab-AutoDrive/BEVFusion: Offical PyTorch implementation of “BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework” (github.com)

前言:这是今年新发的一篇论文,我在第一次阅读时,代码还未开源,前几天发现开源了,而且这个框架做的很清晰,可以基于这个工作熟悉一下融合方案,也能稍稍改进一下。

笔者环境:

sys.platform: linux
Python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0]
CUDA available: True
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr
NVCC: Build cuda_11.5.r11.5/compiler.30672275_0
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.0+cu111
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel® 64 architecture applications
  • Intel® MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
  • TorchVision: 0.9.0+cu111
    OpenCV: 4.6.0
    MMCV: 1.4.0
    MMCV Compiler: GCC 7.3
    MMCV CUDA Compiler: 11.1
    MMDetection: 2.11.0
    MMDetection3D: 0.11.0+9d3e162

    说人话:torch1.8.0+cuda111,显卡是3090,其余环境根据根据官方文档配的

    一、安装

    1、克隆BEVFusion代码

    git clone https://github.com/ADLab-AutoDrive/BEVFusion.git
    

    2、新建虚拟环境

    conda create -n bevfusion python=3.8.3
    conda activate bevfusion #激活
    

    3、根据cuda版本安装torch

    尽量选择1.7或者1.8,cuda版本要对应
    2022年11月22日更新:尽量选1.7吧,1.8的bug导致训练有些问题
    2022年12月2日更新:最近太忙,前几天发现1.7的torch不适合在这个项目上用,具体原因和3090显卡有关,缺少相关库(3090最低支持cuda11.1,torch1.7最高支持cuda11.0)

    pip install torch=1.8.0+cu111 torchvision=0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
    

    4、安装mmcv-full

    这里要根据自己的torch和cuda来,另外,BEVFusion官方文档推荐1.4.0版本

    从以下网址找到自己合适的版本

    https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
    

    其中cu_version代表cuda版本,torch_version代表torch版本,

    例如,我的是torch1.8.0+cuda111,所以我的地址是:

    https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
    

    因为创建的环境是python3.8,所以选择cp38,别忘了mmcv-full版本是1.4.0,下载whl文件,并传到服务器上,然后pip whl文件(不再赘述pip安装whl了,百度一下)

    5、安装MMDetection

    下面是BEVFusion官方推荐的环境

    python=3.8.3
    mmdet=2.11.0 (please install mmdet in mmdetection-2.11.0)
    mmcv=1.4.0
    mmdet3d=0.11.0
    numpy=1.19.2
    torch=1.7.0
    torchvision=0.8.0

    注意please install mmdet in mmdetection-2.11.0,作者已经在仓库中放了这个文件夹,我们直接进入这个文件夹

    然后执行:

    pip install -r requirements/build.txt
    pip install -v -e .  # or "python setup.py develop"(推荐执行后者)
    

    6、安装MMDetection3D

    退回到BEVFusion根目录下,克隆MMDetection3D,进入执行下面指令

    git clone https://github.com/open-mmlab/mmdetection3d.git
    cd mmdetection3d
    pip install -v -e .  # or "python setup.py develop"(推荐执行后者)
    

    7、作者没有提到的一步

    退回到BEVFusion根目录下,你会注意到有个setup.py文件

    执行python setup.py develop

    至此配置完毕

    以下是我的环境

    Package Version Editable project location


    absl-py 1.3.0
    addict 2.4.0
    anyio 3.6.2
    argon2-cffi 21.3.0
    argon2-cffi-bindings 21.2.0
    asttokens 2.1.0
    attrs 22.1.0
    backcall 0.2.0
    beautifulsoup4 4.11.1
    black 22.10.0
    bleach 5.0.1
    cachetools 5.2.0
    certifi 2022.9.24
    cffi 1.15.1
    charset-normalizer 2.1.1
    click 8.1.3
    contourpy 1.0.6
    cycler 0.11.0
    Cython 0.29.32
    debugpy 1.6.3
    decorator 5.1.1
    defusedxml 0.7.1
    depthwise-conv2d-implicit-gemm 0.0.0
    descartes 1.1.0
    entrypoints 0.4
    exceptiongroup 1.0.4
    executing 1.2.0
    fastjsonschema 2.16.2
    filelock 3.8.0
    fire 0.4.0
    flake8 5.0.4
    fonttools 4.38.0
    google-auth 2.14.1
    google-auth-oauthlib 0.4.6
    grpcio 1.50.0
    h5py 3.7.0
    huggingface-hub 0.11.0
    idna 3.4
    imageio 2.22.4
    importlib-metadata 5.0.0
    importlib-resources 5.10.0
    iniconfig 1.1.1
    ipykernel 6.17.1
    ipython 8.6.0
    ipython-genutils 0.2.0
    ipywidgets 8.0.2
    jedi 0.18.1
    Jinja2 3.1.2
    joblib 1.2.0
    jsonschema 4.17.0
    jupyter 1.0.0
    jupyter_client 7.4.6
    jupyter-console 6.4.4
    jupyter_core 5.0.0
    jupyter-server 1.23.2
    jupyterlab-pygments 0.2.2
    jupyterlab-widgets 3.0.3
    kiwisolver 1.4.4
    llvmlite 0.31.0
    loguru 0.6.0
    lyft-dataset-sdk 0.0.8
    Markdown 3.4.1
    MarkupSafe 2.1.1
    matplotlib 3.6.2
    matplotlib-inline 0.1.6
    mccabe 0.7.0
    mistune 2.0.4
    mmcls 0.24.1
    mmcv-full 1.4.0
    mmdet 2.11.0 /home/wistful/work/my_bevfusion/mmdetection-2.11.0
    mmdet3d 0.11.0 /home/wistful/work/my_bevfusion
    mmpycocotools 12.0.3
    msgpack 1.0.4
    msgpack-numpy 0.4.8
    multimethod 1.9
    mypy-extensions 0.4.3
    nbclassic 0.4.8
    nbclient 0.7.0
    nbconvert 7.2.5
    nbformat 5.7.0
    nest-asyncio 1.5.6
    networkx 2.2
    ninja 1.11.1
    notebook 6.5.2
    notebook_shim 0.2.2
    numba 0.48.0
    numpy 1.23.4
    nuscenes-devkit 1.1.9
    oauthlib 3.2.2
    opencv-python 4.6.0.66
    packaging 21.3
    pandas 1.4.4
    pandocfilters 1.5.0
    parso 0.8.3
    pathspec 0.10.2
    pexpect 4.8.0
    pickleshare 0.7.5
    Pillow 9.3.0
    pip 22.3.1
    pkgutil_resolve_name 1.3.10
    platformdirs 2.5.4
    plotly 5.11.0
    pluggy 1.0.0
    plyfile 0.7.4
    prettytable 3.5.0
    prometheus-client 0.15.0
    prompt-toolkit 3.0.32
    protobuf 3.20.3
    psutil 5.9.4
    ptyprocess 0.7.0
    pure-eval 0.2.2
    pyasn1 0.4.8
    pyasn1-modules 0.2.8
    pycocotools 2.0.6
    pycodestyle 2.9.1
    pycparser 2.21
    pyflakes 2.5.0
    Pygments 2.13.0
    pyparsing 3.0.9
    pyquaternion 0.9.9
    pyrsistent 0.19.2
    pytest 7.2.0
    python-dateutil 2.8.2
    pytz 2022.6
    PyWavelets 1.4.1
    PyYAML 6.0
    pyzmq 24.0.1
    qtconsole 5.4.0
    QtPy 2.3.0
    requests 2.28.1
    requests-oauthlib 1.3.1
    rsa 4.9
    scikit-image 0.19.3
    scikit-learn 1.1.3
    scipy 1.9.3
    Send2Trash 1.8.0
    setuptools 65.5.1
    Shapely 1.8.5.post1
    six 1.16.0
    sniffio 1.3.0
    soupsieve 2.3.2.post1
    stack-data 0.6.1
    tabulate 0.9.0
    tenacity 8.1.0
    tensorboard 2.11.0
    tensorboard-data-server 0.6.1
    tensorboard-plugin-wit 1.8.1
    tensorpack 0.11
    termcolor 2.1.0
    terminado 0.17.0
    terminaltables 3.1.10
    threadpoolctl 3.1.0
    tifffile 2022.10.10
    timm 0.6.11
    tinycss2 1.2.1
    toml 0.10.2
    tomli 2.0.1
    torch 1.8.0+cu111
    torchaudio 0.8.0
    torchpack 0.3.1
    torchvision 0.9.0+cu111
    tornado 6.2
    tqdm 4.64.1
    traitlets 5.5.0
    trimesh 2.35.39
    typing_extensions 4.4.0
    urllib3 1.26.12
    wcwidth 0.2.5
    webencodings 0.5.1
    websocket-client 1.4.2
    Werkzeug 2.2.2
    wheel 0.38.4
    widgetsnbextension 4.0.3
    yapf 0.32.0
    zipp 3.10.0


    sys.platform: linux
    Python: 3.8.3 | packaged by conda-forge | (default, Jun 1 2020, 17:43:00) [GCC 7.5.0]
    CUDA available: True
    GPU 0,1: NVIDIA GeForce RTX 3090
    CUDA_HOME: /usr/local/cuda
    NVCC: Build cuda_11.1.TC455_06.29069683_0
    GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
    PyTorch: 1.8.0+cu111
    PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel® Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel® 64 architecture applications
  • Intel® MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 11.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  • CuDNN 8.0.5
  • Magma 2.5.2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
  • TorchVision: 0.9.0+cu111
    OpenCV: 4.6.0
    MMCV: 1.4.0
    MMCV Compiler: GCC 7.3
    MMCV CUDA Compiler: 11.1
    MMDetection: 2.20.0
    MMDetection3D: 0.11.0+9d3e162

    二、组织数据集

    注意,一般来说使用mmdetection3d框架的工作,要把数据集组织到mmdetection3d/data下,而不是在项目的根目录创建一个data目录。所以要把数据集组织到BEVFusion/mmdetection3d/data下

    It is recommended to symlink the dataset root to $MMDETECTION3D/data. If your folder structure is different from the following, you may need to change the corresponding paths in config files.

    数据集组织我就不再赘述了,按照官方说明的组织形式组织好

    mmdetection3d
    ├── mmdet3d
    ├── tools
    ├── configs
    ├── data
    │ ├── nuscenes
    │ │ ├── maps
    │ │ ├── samples
    │ │ ├── sweeps
    │ │ ├── v1.0-test
    | | ├── v1.0-trainval
    │ ├── kitti
    │ │ ├── ImageSets
    │ │ ├── testing
    │ │ │ ├── calib
    │ │ │ ├── image_2
    │ │ │ ├── velodyne
    │ │ ├── training
    │ │ │ ├── calib
    │ │ │ ├── image_2
    │ │ │ ├── label_2
    │ │ │ ├── velodyne
    │ ├── waymo
    │ │ ├── waymo_format
    │ │ │ ├── training
    │ │ │ ├── validation
    │ │ │ ├── testing
    │ │ │ ├── gt.bin
    │ │ ├── kitti_format
    │ │ │ ├── ImageSets
    │ ├── lyft
    │ │ ├── v1.01-train
    │ │ │ ├── v1.01-train (train_data)
    │ │ │ ├── lidar (train_lidar)
    │ │ │ ├── images (train_images)
    │ │ │ ├── maps (train_maps)
    │ │ ├── v1.01-test
    │ │ │ ├── v1.01-test (test_data)
    │ │ │ ├── lidar (test_lidar)
    │ │ │ ├── images (test_images)
    │ │ │ ├── maps (test_maps)
    │ │ ├── train.txt
    │ │ ├── val.txt
    │ │ ├── test.txt
    │ │ ├── sample_submission.csv
    │ ├── scannet
    │ │ ├── meta_data
    │ │ ├── scans
    │ │ ├── batch_load_scannet_data.py
    │ │ ├── load_scannet_data.py
    │ │ ├── scannet_utils.py
    │ │ ├── README.md
    │ ├── sunrgbd
    │ │ ├── OFFICIAL_SUNRGBD
    │ │ ├── matlab
    │ │ ├── sunrgbd_data.py
    │ │ ├── sunrgbd_utils.py
    │ │ ├── README.md

    (以上数据集不用全需要的,自己需要哪个组织哪个)

    然后利用BEVFusion/tools/create_data.py脚本组织文件就行了,放一下组织nuScenes数据集成功的截图吧

    三、训练与测试

    1、分布式训练

    # first train camera stream
    ./tools/dist_train.sh configs/bevfusion/cam_stream/bevf_pp_4x8_2x_nusc_cam.py 8
    # then train LiDAR stream
    ./tools/dist_train.sh configs/bevfusion/lidar_stream/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py 8
    # then train BEVFusion
    ./tools/dist_train.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py 8
    

    ./tools/dist_train.sh configs/bevfusion/cam_stream/bevf_pp_4x8_2x_nusc_cam.py 8中,8代表GPU个数

    使用sh文件进行训练和测试时,可能会遇到无权限的问题,使用chmod 777 tools/dist_train.sh进行权限更改即可

    其中,配置文件我就不再叙述,可以使用官方的简单测试,如果需要使用自己的配置文件,请参考mmdetection3d官方文档

    值得注意的是,我在使用分布式和非分布式方法做测试的时候,非分布式运行正常,分布式仍然提示找不到数据集,我搜寻资料得知是因为工作路径的原因导致的,我用print(os.getcwd())打印了一下,发现使用非分布式训练时,工作路径/home/wistful/work/my_bevfusion/mmdetection3d/tools下,即在BEVFusion/mmdetection3d/tools下,而使用分布式训练时,工作路径在/home/wistful/work/my_bevfusion下,即在BEVFusion根目录下。所以我使用os.chdir('/home/wistful/work/my_bevfusion/mmdetection3d/tools')将工作路径改变了一下,问题解决

    2、非分布式训练

    直接在pycharm中根据各参数设置一下,训练即可,不再叙述。

    3、测试

    ./tools/dist_test.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py ./work_dirs/bevfusion_pp.pth 8 --eval bbox
     # 前者是配置文件,后者是GPU个数
    
    # 如需可视化
    ./tools/dist_test.sh configs/bevfusion/bevf_pp_2x8_1x_nusc.py ./work_dirs/bevfusion_pp.pth 8 --eval bbox --show-dir YourVisualResultsDir --show --eval bbox #根据test.py的参数看一下
    

    可视化结果会保存在你指定的目录下,如下所示

    导入CloudCampare查看

    物联沃分享整理
    物联沃-IOTWORD物联网 » 车联网)BEVFusion:北京大学智能车联网

    发表回复